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4. Please collate the solutions in order in your submission. Each problem should start
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do is correct. When a problem instead uses the word “explain,” an informal expla-
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marked diagram is expected.

7. All problems are numbered as “Problem x.y.z” where x.y is the subsection number
and z is the the number of the problem within the subsection. Each problem’s point
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ask any question so long as it does not give away any part of your solution to
any problem. If you ask a question on Piazza, all other teams will be able to see it.
If such a question reveals all or part of your solution to a power round question, your
team’s power round score will be penalized severely. For any questions you have that
might reveal part of your solution, or if you are not sure if your question is appropriate
for Piazza, please email us at pumac@math.princeton.edu. We will email coaches with
important clarifications that are posted on Piazza.
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Introduction and Advice

In this power round, we state and prove a special case of the “cubic surface theorem”.
This theorem states that every smooth cubic surface in P3 contains exactly 27 lines (if you
don’t understand what any of this means at this point, don’t worry!). This is a rather
striking result, and we hope you will find it as intricate and beautiful as we do.

A large part of the difficulty in this power round will arise from the many different per-
spectives that one needs to understand the material and tackle the problems. For example,
one can many times solve problems by looking at things from an algebraic standpoint, work-
ing explicitly with equations, as well as with more complicated algebraic structures. On the
other hand, there is a vital geometric component, as you will see. These two perspectives
marry to give a unique and exquisite sub-field of mathematics; this is known as algebraic
geometry.

Here is some further advice with regard to the Power Round:

• Read the text of every problem! Many important ideas are included in problems
and may be referenced later on. In addition, some of the theorems you are asked to
prove are useful or even necessary for later problems.

• Make sure you understand the definitions. A lot of the definitions are not easy
to grasp; don’t worry if it takes you a while to fully understand them. If you don’t,
then you will not be able to do the problems. Feel free to ask clarifying questions
about the definitions on Piazza (or email us).

• Don’t make stuff up: on problems that ask for proofs, you will receive more points
if you demonstrate legitimate and correct intuition than if you fabricate something
that looks rigorous just for the sake of having “rigor.”

• Check Piazza often! Clarifications will be posted there, and if you have a question
it is possible that it has already been asked and answered in a Piazza thread (and
if not, you can ask it, assuming it does not reveal any part of your solution to a
question). If in doubt about whether a question is appropriate for Piazza,
please email us at pumac@math.princeton.edu.

• Don’t cheat: as stated in Rules and Reminders, you may NOT use any references
such as books or electronic resources. If you do cheat, you will be disqualified and
banned from PUMaC, your school may be disqualified, and relevant external institu-
tions may be notified of any misconduct.

Good luck, and have fun!

– Kaivalya Kulkarni, Colby Riley

We would like to acknowledge and thank many individuals and organizations for their
support; without their help, this Power Round (and the entire competition) could not exist.
Please refer to the solutions of the power round for full acknowledgments and references.
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Notation

• ∀: for all. Ex.: ∀x ∈ {1, 2, 3} means “for all x in the set {1, 2, 3}”
• A ⊂ B: proper subset. Ex.: {1, 2} ⊂ {1, 2, 3}, but {1, 2} ̸⊂ {1, 2}
• A ⊆ B: subset, possibly improper. ex.: {1}, {1, 2} ⊆ {1, 2}
• f : x 7→ y: f maps x to y. Ex.: if f(n) = n − 3 then f : 20 7→ 17 and f : n 7→ n − 3
are both true.

• f(C): for a function f : A → B and subset C ⊆ A, the set of elements of the form
f(c), for c ∈ C.

• {x ∈ S : C(x)}: the set of all x in the set S satisfying the condition C(x). Ex.:
{n ∈ N :

√
n ∈ N} is the set of perfect squares.

• N: the natural numbers, {1, 2, 3, . . . }.
• Z: the integers.

• Q: the rational numbers.

• R: the real numbers.

• C: the complex numbers.

• |S|: the cardinality of set S.

• ∀x = a+ bi ∈ C, |x| = a2 + b2.



1 Preliminaries from Linear Algebra and Topology

The 2 sections on linear algebra will not contain problems, but it is highly recommended
to read through the material; this will make you much more comfortable in the rest of the
power round.

The sections on Topology will contain problems!

1.1 Complex Vector Spaces

A natural setting for much of the power round will be in Complex Vector Spaces, which
will allow us to apply the structure of C to other spaces! We will see many of these spaces
throughout the power round.

Definition 1.1.1. A complex vector space V is a set equipped with two operations, addition
from V × V → V and scalar multiplication from C × V → V . Elements of V are called
vectors. Addition satisfies the following properties:

1. (Associativity) For all u, v, w ∈ V , u+ (v + w) = (u+ v) + w.

2. (Commutativity) For all v, w ∈ V , v + w = w + v.

3. (Existence of zero) There exists an element known as the zero vector, denoted 0 such
that v + 0 = v for all v ∈ V .

4. (Existence of inverse) For each v ∈ V , there exists an inverse element, denoted −v,
such that v + (−v) = 0.

Scalar Multiplication satisfies the following properties:

1. (Associativity) For all α, β ∈ C and v ∈ V , α(βv) = (αβ)v.

2. (Multiplicative Identity) For each v ∈ V , 1v = v.

3. (Distributivity I) For all α, β ∈ C, we have that (α+ β)v = αv + βv.

4. (Distributivity II) For all v, w ∈ V and all λ ∈ C, we have λ(v + w) = λv + λw.

Example. The set of all n tuples of complex numbers forms a complex vector space with
component wise addition and component wise scalar multiplication. We will denote this
space Cn.



Example. Consider C[x], the set of all polynomials in 1 variable with coefficients in the
the complex numbers C (e.g. (1+ i)x3− 4x+ i ∈ C[x]). This forms a complex vector space,
with standard polynomial addition and scalar multiplication. This is an example of a vector
space that is “infinite dimensional” - we will come back to this notion later.
We introduce several fundamental notions:

Definition 1.1.2. Let V be a (complex) vector space. A subspace U ⊂ V is a subset of
a vector space V satisfying the following properties:

1. for all u, v ∈ U , u+ v ∈ U .

2. for all α ∈ C and u ∈ U , αu ∈ U .

Every subspace of a vector space V is itself a vector space.

Definition 1.1.3. A set of vectors {v1, · · · , vk} is said to be linearly dependent if there
exists scalars α1, · · · , αk, not all zero, such that

α1v1 + ...+ αkvk = 0 (1)

If there does not exist such a collection of scalars, then the set is linearly independent.

Example. In C2, the set {(1, i), (3i, i), (3 + i, 0)} is linearly dependent, as

1(1, i) +−1(3i, i) + i(3 + i, 0) = (0, 0) = 0 (2)

Meanwhile, in C[x], the set {ix2, x, 90 + i+ x} is linearly independent.

Definition 1.1.4. The span of a set of vectors {v1, ..., vk} is the set {α1v1 + ... + αkvk :
α1, ..., αk ∈ C}. That is, it is all possible linear combinations of the vectors {v1, · · · , vk}.

Definition 1.1.5. A basis for a vector space V is a linearly independent set of vectors
which spans the whole vector space V .

The dimension of a vector space is the size of the basis. It is an incredible fact that this
is actually well-defined - two bases of the same vector space must be the same size. (One
last thing: the vector space consisting only of the 0 vector is considered to have dimension
0).

The above conversation has so far concerned only finite bases; these form finite dimen-
sional vector spaces. We can introduce similar notions of linear dependence, span and basis
for infinite sets of vectors.

Definition 1.1.6. An infinite set of vectors A is linearly dependent if there exists a
linearly dependent finite subset of A. They are linearly independent if no finite linearly
dependent subset of A exists. A spans a space V if every element in V can be written as
a finite linear combination of elements in A.

And basis is defined in the same way as before. One can check that C[x] from before is
an infinite dimensional vector space with a basis of {1, x, x2, x3, ...}.



1.2 Linear Transformations

We now develop the notion of maps between vector spaces. Let V and U be (complex)
vector spaces, and let T be a map from V to U (at the moment, this is just a map of
sets). We want T to respect the operations of our vector spaces, vector addition and scalar
multiplication:

1. If we add two vectors v1, v2 in V and then apply T to this sum (T (v1 + v2)), we want
this to be the same if we first applied T to v1 and v2 and then add the two vectors in
U (T (v1) + T (v2)).

2. If we multiply two vectors v1, v2 in V by a scalar c ∈ C, and then apply T ( T (cv1)),
we want this to be the same if we first applied T to v1 and then multiplied by c (
cT (v1)).

We are led to the following:

Definition 1.2.1. A linear transformation between a vector space V and a vector space
U is a mapping T : V → U such that for all v1, v2 ∈ V , c ∈ C,

T (v1 + v2) = T (v1) + T (v2) (3)

T (cv1) = cT (v1) (4)

Linear transformations have a particularly nice description in terms of bases. If {v1, ..., vk}
is a basis for a finite dimensional vector space V , then any linear map T : V → W is com-
pletely determined by where it sends basis vectors. This is because any vector v ∈ V may
be expressed as a linear combination of {v1, · · · , vk}, and repeatedly applying (3) and (4)
we see that T (v) is completely determined by the values {T (v1), · · · , T (vk)}.
Furthermore, specifying a map of sets {v1, · · · , vk} → W uniquely defines a linear map of
vectors space T : V → W ; can you see why?
Now, consider the vector spaces U and W , each with a basis {u1, ..., uj} and {w1, ..., wk}.
From the previous paragraph, a linear transformation T : U → W is determined by its
values on {u1, · · · , uj}, and we can write T (ui) as a linear combination of {w1, ..., wk} for
each 1 ≤ i ≤ j: T (ui) = ci1w1 + · · · + cikwk, ci1, · · · , cik ∈ C. We can make a grid out of
these elements in the following way: c11 . . . cj1

...
. . .

...
c1k . . . cjk

 (5)

You may notice that this looks exactly like a matrix. In fact, it is! Remember that
{v1, ..., vj} is our basis for V . Then we can write how a matrix transforms a vector asc11 . . . cj1

...
. . .

...
c1k . . . cjk


α1

...
αj

 =

α1c11 + ...+ αjcj1
...

α1c1k + ...+ αjcjk

 (6)



Here, the 1-row column on the left represents the vector α1v1 + ... + αjvj , and the
output represents (α1c11 + ...+α1cj1)u1 + ...+ (α1c1k + ...+α1cjk)uk. Thus, to each linear
transformation T : U → W we may associate a matrix, which is dependent on a choice
of bases for both U and V . This is an extremely useful idea for computational purposes.
Many times, we will blur the distinction between a linear transformation and its matrix; in
this case, the choice of bases will be implied implicitly.
One important point:

Theorem 1.2.2. Let V,W and U be vector spaces with bases {v1, · · · , vk}, {w1, · · · , wj},
and {u1, · · · , un}, respectively. Let T : V → W and S : W → U be linear transformations.
Then the matrix corresponding to the composite S ◦T is given by AB, where A is the matrix
of S with respect to the given bases, and B is the matrix of T with respect to the given bases.

Definition 1.2.3. When discussing the vector spaces Cn, there is an almost implicit basis
used called the standard basis. This consists of the n elements
{(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)}. You can check that this forms a basis and that
therefore Cn is an n-dimensional vector space.

Given a linear transformation T : V → U , the image T (V ) is a subspace of U . The
dimension of T (V ) is extremely important, and is called the rank of T .

Example. 1. The mapping T : C3 → C1 such that T ((a, b, c)) = a+ b+ c has rank 1.

2. The mapping T : C1 → C3 such that T (a) = (a, 0, 0) has rank 1.

3. The zero mapping T : V → W such that T (v) = 0 has rank 0.

The vector space T (V ) is a subspace of U . Meanwhile, the kernel ker(T ), the set of all
vectors v such that T (v) = 0, is a subspace of V .

Theorem 1.2.4. (Rank-Nullity) Let T : V → W be a linear mapping of vector spaces.
Then,

dim(ker(T )) + dim(T (V )) = dim(V ) (7)

The rank of T can actually be found just by looking at a matrix A which represents T
(in any basis!). First notice that the columns of T may be interpreted as vectors in W . Call
this subspace spanned by these vectors col(A). Then, we have that rank(T ) = dim col(A).
Furthermore, each row of A may be naturally interpreted as a vector in V ; call the subspace
spanned by these vectors row(A). Then we have the rank(T ) = dim col(A) = dim row(A).
(Aside: Given any matrix A, we may define rank(A) to be either dim col(A) or dim row(A),
as these quantities are equal.)

Example. In the standard basis for C3, the following matrices have rank 2:1 0 0
0 1 0
0 0 0

 (8)

 1 0 1 + i
i 0 −1 + i

1 + 3i 1 −2 + 4i

 (9)



Thus, their corresponding linear transformations have rank 2, and hence the dimension of
their respective kernels is 1.

One last fact:

Theorem 1.2.5. Let A be a square matrix of size n × n, and recall the quantity det(A)
(the determinant of A). Then, we have that det(A) ̸= 0 if and only if rank(A) = n, or
equivalently, dim(ker(A)) = 0.



1.3 Topological Spaces

We now give some topological background that will be needed later.

Definition 1.3.1. A topological space is a set X along with a collection E of subsets
(denoted (X,E)), that satisfy the following properties:

1. The empty set ∅ and the set X are contained in the collection E.

2. Let {Eα} be an arbitrary collection of elements in E. Then the union
⋃
Eα is contained

in the collection E.

3. Let E1, · · · , Ek be a finite collection of elements in E. Then the intersection
⋂k

i=1Ei

is contained in the collection E.

A subset A of X is said to be open if A ∈ E, and the collection E is said to define a topology
on X.

Example. Let X be any set, and let E = {X, ∅}. This defines a topology on X: clearly E

is closed under union and finite intersection, and by construction the empty set and X are
contained in E. This is known as the indiscrete topology on X.

Problem 1.3.1. Let X be any set, and let E = P (X), the power set of X. Show that
E defines a topology on X. This is known as the discrete topology on X. (The Power
set P (X) is defined as the set of all subsets of X. For example, if X = {1, 2}, then
P (X) = {∅, {1}, {2}, {1, 2}}.)

Problem 1.3.2. LetX be the set {a, b, c} and let E = {{a}, {b}, {c}, {a, b}, {a, b, c}, ∅}.
Does E define a topology on X? Why or why not?

Problem 1.3.3. List all the possible topologies on X = {a, b, c} (up to relabeling).

Sometimes, it is more convenient to talk about sets whose complement is open. That
is, in a space X, a subset C ⊂ X is said to be closed if Cc = {x ∈ X : x /∈ C} is open. In
fact, we can also define a topology by specifying its closed sets.

We now introduce an important concept.

Definition 1.3.2. Let X be a topological space, and let Y ⊂ X be a subset. A point p ∈ X
is said to be a limit point of Y if for each open set U containing p, U ∩Y ̸= ∅. Furthermore,
if LY is the union of all limit points of Y , then LY ∪ Y is said to be the closure of Y in X,
denoted Ȳ .

Problem 1.3.4. Let X be a topological space, and let Y ⊂ X be any subset. Show
that Ȳ is a closed subset of X.



Problem 1.3.5. Let X be a topological space. Show that Y ⊂ X is closed if and only
if Y = Ȳ .

Now we will introduce an important topology: the classical topology on C.
For any point z = a+bi ∈ C and a number ϵ > 0 ∈ R, define the open ball Bϵ(z) around

z to be the set of all points {p ∈ C : |p− z| < ϵ}.

Definition 1.3.3. A set X ⊂ C is open if X =
⋃

i∈J Ai, where each Ai = Bϵi(zi) for some
ϵi and zi and where J is an arbitrary indexing set, or if X is the empty set. That is, a
nonempty set is open if it is the arbitrary union of open balls in C.

The indexing set may be finite, infinite or even uncountable. It is actually not immediate
that this definition satisfies the axioms for a topology.1

Problem 1.3.6. Show that the above definition satisfies the axiom for a topology. In
particular, show that the intersection of two open sets is open. (Hint: take an open
ball around each point).

Problem 1.3.7. Show that for any open set in C, it is actually the union of a countable
number of open balls, that is, that our indexing set J from earlier may be taken to be
countable. (Hint: Use the fact (you don’t need to prove this) that Q[i] = {a + bi ∈
C | (a, b) ∈ Q} is dense in C; that is, for any x ∈ C and ϵ > 0, there exists q ∈ Q[i] so
that |x− q| < ϵ).

We now define the notion of bases for a topology.

Definition 1.3.4. Let (X,E) be a topological space. A basis for E is a collection of open
sets B such that every U ∈ E may be expressed as the union of a subcollection of elements
in B.

With this definition in mind, in the above example we see that open balls form a basis
for the topology of C. We now describe a few more important definitions and theorems that
will be useful later.
It is many times the case where we have two spaces X ⊂ Y , and we want to describe a
topology on X in terms of that on Y .

Definition 1.3.5. For X ⊂ Y and a given topology on Y , the subspace topology on X
is given as:

U ⊂ X is open in X if and only if it is of the form U = V ∩X for V ⊂ Y open in Y .

Problem 1.3.8. Verify that the subspace topology is indeed a topology.

1for a set X to be countable means that there is a bijective function from X to the natural numbers N.
To be uncountable means that X is infinite and there is no such bijection. For example, {5} is finite, Z and
Q are countable, and R and C are uncountable.



We now introduce the product topology.

Definition 1.3.6. Let {(Xi,Ei)}, 1 ≤ i ≤ n, be a finite collection of topological spaces.
Then, we may consider the Cartesian product ΠXi. This is naturally a topological space:
a subset A ∈ ΠXi is said to be open if it may be expressed as the union of sets of the form
U1× · · · ,× Un where each Ui ∈ Ei. This topology is known as the product topology on the
space ΠXi.

2

Example. Consider the space C2 consisting of all pairs of complex numbers (a, b). Then
C2 is the product C × C, and hence inherits a topological structure from C in the form of
the product topology.

Problem 1.3.9. Notice that there is a canonical map ϕ : C → R2 given by a+ bi →
(a, b). Furthermore, R2 may be equipped with the product topology from R (We say
that a subset U ⊂ R is open if it may be written as the union of open intervals). Show
that a subset U ⊂ C is open if and only if the set ϕ(U) is open in R2.

There is another, slightly more complicated way to form new spaces. It is called the quotient
topology, and it can be thought of as an operation where one “glues” points of a space
together to form a new space.

We first introduce the notion of an equivalence relation:

Definition 1.3.7. Let S be a (nonempty) set. An equivalence relation on S is a subset Σ
of the Cartesian Product S × S satisfying the following conditions:

1. (Reflexive Property) for each a ∈ S, (a, a) ∈ Σ.

2. (Symmetric Property) if (a, b) ∈ Σ, then so is (b, a).

3. (Transitive Property) if (a, b) ∈ Σ and (b, c) ∈ Σ, then so is (a, c).

Example. Let S be a set, and let S1, · · · , Sk be a collection of pairwise disjoint subsets
such that

⋃k
i=1 Si = S. Consider the subset Σ of the Cartesian Product S ×S consisting of

pairs (a, b) where both a and b lie in Si, for the same i. Then, Σ is an equivalence relation:
for each a ∈ S, a lies in some Si as the union

⋃k
i=1 Si is S. Thus, (a, a) is contained in Σ.

Similarly, if (a, b) ∈ Σ, then this implies that a and b lie in some Si, for the same i. In turn,
this implies that (b, a) ∈ Σ. A similar argument shows the transitive property: (a, b) ∈ Σ
and (b, c) ∈ Σ, then so is (a, c). It turns out that all equivalence relations in turn define
a pairwise disjoint collection of sets like Si, which from now on we will call equivalence
classes.

2For products of infintely many spaces, the situation is more complicated; however, as we will not be
dealing with infinite products, we do not discuss this case here.



Problem 1.3.10. Prove the transitive property of equivalence relations for the above
example.

Another way to notate equivalence relations is as follows: given an equivalence relation Σ
on a set S, we write a ∼ b if and only if (a, b) ∈ Σ. We will use this notation for the rest of
the power round.

Now take any topological space X with an equivalence relation defined on it. Now let
the new space X/∼ be defined as the set of all equivalence classes on X. For any p ∈ X, let
[p] ∈ X/∼ be the equivalence class that p belongs to: this gives a map q from X to X/∼.
Then we define the open sets in Y to be precisely as follows:

Definition 1.3.8. A set U is open in X/∼ if and only if {x ∈ X : [x] ∈ U} is open in X.

Example. Let D (the unit disk) be the set of points D = {z ∈ C : |z| ≤ 1}, and introduce
an equivalence relation as follows: if |z| < 1, then z ∼ w if and only if z = w. If z, w are
such that |z| = |w| = 1, then z ∼ w. Then D/∼ can be thought of as a sphere: this can be
visualized as taking a filled-in disk and gluing the circular edge all into one point. [insert
image].

Example. Let I2 be the unit square in the complex plane (that is, {a+ bi : a ∈ [0, 1], b ∈
[0, 1]}, and let z, w ∈ I2 be equivalent if z = 0 + bi and w = 1 + (1− b)i, for 0 ≤ b ≤ 1 (or
vice versa). Then I2/∼ is the Möbius strip, a square whose two edges are identified with a
half twist.

[insert picture of mobius strip]
Before we move on, there are a few properties that may be desirable for some topological

spaces but not others. For instance, in C’s classical topology, for any two points z, w ∈ C,
one can make small enough open balls around z and w such that the balls do not intersect.
Formally, we have this definition:

Definition 1.3.9. A space S is Hausdorff if for any two x, y ∈ S, if x ̸= y, then there
exists open sets x ∈ Ux, y ∈ Uy such that Ux ∩ Uy = ∅.

Example. C is Hausdorff. Given any two points in C, one can always draw two open balls
around the points that do not intersect.

Problem 1.3.11. For any set X, is the indiscrete topology on X Hausdorff? What
about the discrete topology? (Hint: You will need to make cases.)

Problem 1.3.12. Let X be a Hausdorff space, and let Y ⊂ X have the subspace
topology: is Y Hausdorff? Similarly, if Y ⊂ X has the subspace topology from X, and
Y is Hausdorff, must X also be Hausdorff? If X and Y are two spaces, and they are
both Hausdorff, is X × Y Hausdorff? What if only X is Hausdorff?

There is one last property that will be relevant to our power round, namely, Noetherian
topological spaces.



Definition 1.3.10. A space X is Noetherian if for every descending sequence

X1 ⊃ X2 ⊃ X3 ⊃ ...

of closed sets, there is some m such that Xm = Xm+1 = Xm+2 = .... In other words, there
cannot exist a infinite descending chain of closed subsets.

Example. C is not Noetherian. For example, we can take the sequence of closed balls
Xn = {z : |z| ≤ 1

n}, which descends infinitely.

Problem 1.3.13. Prove that if a space is both Hausdorff and Noetherian, then it must
be discrete. (Hint: the finite case is true even if we only assume Hausdorff).



1.4 Continuity

Definition 1.4.1. Let X and Y be topological spaces. A continuous morphism (or map,
mapping, function, etc.) is a map f : X → Y such that the inverse image of every open set
O ⊂ Y is an open subset of X.

Problem 1.4.1. Let f : X → Y be a mapping of topological spaces. Show that f is
continuous if and only if the inverse image of every closed set is closed.

Example. For the Cartesian product X × Y , the projection mapping p : X × Y → X is
continuous, since for any open set U ⊂ X, p−1(U) = U ×Y , which is an open set in X ×Y .

Example. For a topological space X and an equivalence relation ∼, the mapping q : X →
X/∼ that sends x ∈ X to its equivalence class [x] ∈ X/∼ is continuous since, by definition,
a set U ⊂ X/∼ is open only if q−1(U) is open.

Example. Here is an example of a map that is not continuous. Consider the map f : C → C
that sends z to 1 if |z| > 0, and sends z to 0 otherwise. The map is not continuous since the
inverse image of the open ball B 1

2
(0) of radius one half around 0 is the one point set {0},

which is not open in the classical topology on C. (Note that the inverse image of B 1
2
(1) is

in fact C− {0}, which is open).

In practice, given a map f between topological spaces X and Y , checking whether f−1(V )
is open for each open set V ⊂ Y can be quite tedious. Thankfully, there are simpler ways
to check whether a map is continuous. Namely, given a basis BY of the topology on Y , it
suffices to check that f−1(W ) is open for each W ∈ BY .

Problem 1.4.2. Verify that the above assertion is actually true; i.e. given a map
f : X → Y such that f−1(W ) is open in X for each W ∈ BY (BY is as above), show
that f is continuous.

Problem 1.4.3. For the following maps, decide (with proof) whether the map is con-
tinuous or not:

• The identity map id : X → X that sends x ∈ X to itself.

• The constant map c : X → {x0} that sends everything to the one point set {x0}.

• The map from C with the classical topology to C with the discrete topology which
is the identity on each element.

Problem 1.4.4. Let X, Y , and Z be topological spaces, and suppose f : X → Y
and g : Y → Z are continuous maps. Show that the composition g ◦ f : X → Z is
continuous.

A continuous map is said to be a homeomorphism between two spaces if it is a bijection
and has an inverse which is also continuous. If a homeomorphism exists between two spaces,
they are said to be homeomorphic.



Problem 1.4.5. Let X, Y , and Z be topological spaces, and suppose f : X → Y
and g : Y → Z are homeomorphisms. Show that the composition g ◦ f : X → Z is a
homeomorphism.

Problem 1.4.6. Give an example of two spaces X, Y and a map f : X → Y such that
f is continuous and bijective, but its inverse is not continuous.

Problem 1.4.7. Given an example of a homeomorphism between the open unit interval
(0, 1) ⊂ R to the whole real line R. (Hint: You may assume trigonometric functions
and inverse trignometric functions are continuous on their respective domains).

Problem 1.4.8. Introduce an equivalence relation on the complex plane as follows:
a+ bi ∼ c+ di iff c− a ∈ Z and d− b ∈ Z and denote C/∼ as T . Then let S1 ⊂ C be
the set S1 = {z : |z| = 1}, with the subspace topology. Show that T is homeomorphic
to S1 × S1.

Problem 1.4.9. Let A ⊂ B with the subspace topology. A retraction r : B → A is a
continuous function from B to A such that for all a ∈ A, then r(a) = a. Take as given
that there is no retraction from the unit disk D ⊂ C to the unit circle S1 ⊂ C. Using
this, prove that for any continuous function f from the unit disk to itself, there exists
some x ∈ D such that f(x) = x. (Hint: Argue by contradiction, and assume that there
exists a function f : D → D with no fixed points. How can you construct a retraction
from D → S1 from such a function f?)



2 Algebraic Geometry

2.1 Affine and Projective Spaces

We start with a definition fundamental to algebraic geometry.

Definition 2.1.1. Consider the set of all n-tuples of complex numbers,

{(a1, · · · , an) |a1, · · · , an ∈ C}. (10)

This is known as n-dimensional complex affine space, denoted An(C) or An. Notice that
An also has the structure of a vector space.

Affine space has a natural topological structure, namely the product topology from C.
In opposition to affine space, there is also projective space, denoted Pn(C) or simply Pn.

We now define complex projective space:

Definition 2.1.2. Consider the set An+1 − (0, · · · , 0), where each element is represented
by an n+ 1-tuple of complex numbers (a0, · · · , an), and at least one ai is nonzero for some
i. Define an equivalence relation as follows: (a0, · · · , an) ∼ (b0, · · · , bn) if there exists a
nonzero λ ∈ C such that

(a0, · · · , an) = (λb0, · · · , λbn) (11)

Then, Pn is set of equivalence classes under this equivalence relation. Geometrically, one
may think of Pn as the space of lines in An+1.

Problem 2.1.1. Check that the equivalence relation defined above is actually an equiv-
alence relation.

Pn has a natural topological structure, namely the quotient topology from An+1−(0, · · · , 0).
Points in Pn are denoted as [X0, · · · , Xn], where the bracket notation is used to indicate
that [X0, · · · , Xn] represents the equivalence class of points equivalent to (X0, · · · , Xn) ∈
An+1 − {0} under the equivalence relation defined above.



2.2 Affine and Projective Varieties

We introduce the next fundamental idea in algebraic geometry.

Definition 2.2.1. Let f be a polynomial in n variables, say x1, · · · , xn. The (complex)
zero locus of f is defined to be the collection of points (a1, · · · , an) ∈ An such that

f(a1, · · · , an) = 0. (12)

Example. Consider the polynomial f(x1, x2) = x1 + x2. The zero locus of f consists of
points (a1, a2) ∈ A2 such that a1 = −a2.

Definition 2.2.2. An affine variety in An is the intersection of the zero loci of a collection
of polynomials in n variables x1, · · · , xn.

Example. The zero locus of the polynomial f(x1, x2) = x1 + x2 is an affine variety. More
generally, given any polynomial f in variables x1, · · · , xn, the zero locus of f is an affine
variety in An.

Example. Consider the polynomial f defined above, f(x1, x2, x3) = x1+x2, as well as the
polynomial g(x1, x2, x3) = x1 + x2 + x3. Then the intersection of the of the zero loci on
these two polynomials is an affine variety in A3. We now give a more explicit description
of this variety.
Every point (a1, a2, a3) on this variety satisfies two conditions: a1+a2 = 0, and a1+a2+a3 =
0. These two conditions imply that a3 = 0. Thus, we find that this variety consists of all
points (a1, a2, a3) ∈ A3 of the form (a,−a, 0), a ∈ C. This is an example of a special kind
of variety, known as a linear variety.

Every affine variety has a natural topological structure, namely the subspace topology
from An. This is known as the classical topology on V (as opposed to the Zariski topology,
which will be discussed later).

Example. Let A = {α1, · · · , αk} be any finite collection of points in A1(C). We claim that
A is in fact an affine variety. In particular, notice that A is exactly the zero locus of the
polynomial P (x1) = (x1 − α1) · · · (x1 − αk).

Problem 2.2.1. Generalize the preceding example in the following way. Let A =
{α1, · · · , αk} be any finite collection of points in An(C). Show that A is an affine
variety in An(C). (Hint: Show that {α1} is an affine variety first. Then use induction!)

One last generalization:

Problem 2.2.2. Let V1, · · ·Vk be a finite collection of affine varieties in An. Show that
the union

⋃k
i=1 Vi is an affine variety.

We now consider the case of projective varieties. To define projective variety, we first define
several preliminary notions:



Definition 2.2.3. A monomial in n variables x1, · · · , xn is a polynomial of the form
xn1
1 · · ·xnk

k .

The degree of a monomial is the sum n1 + · · ·+ nk.

Definition 2.2.4. Let P (X0, · · · , Xn) be a polynomial. We may write P (uniquely up to
reordering) as the sum of finitely many monomials: P =

∑
Xi0

0 · · ·Xin
n . The degree of P is

the maximum of the degrees of each monomial.

Example. Consider the polynomial P (X1, X2, X3) = X1 + X1X2 + X4
3X2X1. Then the

degrees of the monomials that make up P are 1, 2, and 6, respectively. The maximum of
these numbers is 6; hence the degree of P is 6.

P =
∑

Xi0
0 · · ·Xin

n is said to be homogeneous if each monomial Xi0
0 · · ·Xin

n has the same
degree. In this case, deg(P ) is defined to be the degree of any monomial in the above sum.

Example. The polynomial P (X0, X1) = X0 +X1 is homogeneous, as P is the sum of two
monomials each of degree 1.

Example. The polynomial P (X0, X1, X2) = X0X1(X0 +X2
1 ) is not homogeneous. To see

this, we write P as a sum of monomials: P = X2
0X1 +X0X

3
1 , and note that one monomial

has degree 3, while the other has degree 4.

Problem 2.2.3. Consider the following polynomials:

1. P (X0, X1) = X0(X0 +X1)

2. P (X0, X1, X2) = X3
0 +X4

1 +X0X1X2

3. P (X0, X1, X2, X3) = X1003
0

Which are homogeneous, and which ones are not? Why?

Problem 2.2.4. Let P1, · · ·Pk be a collection of homogeneous polynomials in variables
X0, · · · , Xn. Show that the product Πk

i=1Pi is homogeneous.

Homogeneous polynomials, as opposed to ordinary polynomials, have one key feature that
allows us to think of their zero loci as living in projective space as opposed to affine space.
In particular, if P is a homogeneous polynomial in variables (X0, · · · , Xn), and (α0, · · · , αn)
is a point in the zero locus of P , then for any nonzero λ ∈ C,

P (λα0, · · · , λαn) = λdP (α0, · · · , αn) = 0 (13)

where d is the degree of P . In other words, whenever P vanishes at a point (α0, · · · , αn),
we must have that P vanishes on the entire line (λα0, · · · , λαn). It therefore makes sense
to think of the zero locus of a homogeneous polynomials as collection of points in the space
of lines in affine space - hence, zero loci of homogeneous polynomials define certain subsets
of projective space. We are led to the definition of projective variety:



Definition 2.2.5. A projective variety in Pn is the intersection of zero loci of a collection
of homogeneous polynomials in n+ 1 variables X0, · · · , Xn.

As in the affine case, every projective variety V has a natural topological structure,
namely the subspace topology from Pn. This is also known as the classical topology on V .

Problem 2.2.5. Show that any finite collection of points in Pn is a projective variety.
(Hint: Mimic the proof in the affine case)



2.3 The Zariski Topology

We now introduce a topology onto both affine space An and projective space Pn, that differs
from the classical topology in several key ways.

Definition 2.3.1. Consider the following collection of subsets U of affine space An: for
each U ∈ U, U c (complement of U in An) is the zero locus of a collection of polynomials;
e.g. is an affine variety. Then this collection U of open sets defines a topology on An, known
as the Zariski topology on An. A subset of An is said to be Zariski open if it belongs to U.
Likewise, a subset whose complement belongs to U is said to be Zariski closed. (That is,
closed sets are exactly the affine varieties).

The axioms of a topological space can be checked; it suffices to check that An and ∅ are
closed, finite unions of closed sets are closed, and arbitrary intersections of closed sets are
closed. The first condition follows easily, the second follows from an exercise in the previous
section, and the third also follows immediately.

Example. Consider the affine line A1 with a point removed, say x0 ∈ A1. Then A1 −{x0}
is Zariski open; the set {x0} is an affine variety. In general, subsets of the form An −
{x0, · · · , xn} are Zariski open, as the complements of such subsets are affine varieties.

Notice that every affine variety V inherits a subspace topology from the Zariski topology
on An. We call this topology the Zariski topology on V .

Definition 2.3.2. Let U be a subset of An. U is said to be a quasi-affine variety if there
exists an affine variety V such that U is a Zariski-open subset of V .

We now define the Zariski topology on projective varieties.

Definition 2.3.3. Consider the collection of subsets of affine space Pn, each subset U
satisfying the following property: U c (complement of U in Pn) is the zero locus of a collection
of homogeneous polynomials; e.g. is an projective variety. Then this collection U of open
sets defines a topology on Pn, known as the Zariski topology on Pn. A subset of Pn is said
to be Zariski open if it belongs to U. Likewise, a subset whose complement belongs to U is
said to be Zariski closed.

Just like the affine case, one can readily check that the Zariski topology does in fact
satisfy the axioms for a topological space. There is a notion of “quasi”-projective as well:

Definition 2.3.4. Let U ⊂ Pn. U is said to be a quasi-projective variety if there exists a
projective variety V such that U ⊂ V and U is open in the Zariski topology on V .

We state a quick fact about the Zariski topology (without proof):

Theorem 2.3.5. When considered with the Zariski topology, An and Pn are Noetherian
topological spaces.

Problem 2.3.1. Let V be a variety (i.e. either an affine or projective variety). Show
that V may be described as the common zero locus of finitely many polynomials.



Problem 2.3.2. Prove that An with the Zariski topology is not Hausdorff.

There is a relationship between the classical topology and the Zariski topology. Namely,
every Zariski open subset (of An or Pn) is open in the classical topology:

Problem 2.3.3. Let V be an (affine or projective) variety in An (resp. Pn). Show
that V is closed in the classical topology on An (resp. Pn). Conclude that every Zariski
open set is classically open.
(Hint: You may use the fact that polynomials are continuous maps An → A1 in the
classical topologies).

It is natural to ask if the converse is true. Thankfully, it is not (otherwise, Zariski topology
and the classical topology would be the same!). The following exercise demonstrates this.

Problem 2.3.4. Consider the affine line A1, and let

X = {x+ iy | x = 0, y ∈ R}. (14)

Show that X is closed in the classical topology, but not in the Zariski topology.

Projective space Pn is naturally “covered” by copies of An: for each 0 ≤ i ≤ n, consider the
subset Ui = {[X0, · · · , Xn] | Xi ̸= 0} ⊂ Pn. There is a natural map ϕi : Ui → An given by

[X0, · · · , Xn] → (X0
Xi

, · · · , Xi−1

Xi
, Xi+1

Xi
, · · · Xn

Xi
). Notice that the assumption Xi ̸= 0 allows ϕi

to be well-defined.

Problem 2.3.5. Check that the map ϕi is well defined, and a bijection for each 0 ≤
i ≤ n.

This map has more structure than it may seem at the moment; it is actually a homeomor-
phism in the Zariski topology! To see this, we first describe a process which one can use to
“go between” affine and projective varieties.
Let V ⊂ Pn be an projective variety, and consider the intersection V ∩Ui for each 0 ≤ i ≤ n,
and recall the map ϕi : Ui → An.

Problem 2.3.6. Let V be as above. Show that ϕi(V ∩ Ui) ⊂ An is in fact an affine
variety. This is known as an affine chart for V .

Now, let V ⊂ An be an affine variety. Then, for each 0 ≤ i ≤ n, consider the map
ϕ−1
V : V → Ui defined by restricting the map ϕ−1

i : An → Ui to V . Let V̄ denote the closure
of the image of ϕ−1

V . Then, it follows (by definition) that V̄ is a projective variety; this is
known as a projective closure of the affine variety V .

Problem 2.3.7. Let V and V̄ be as above. Show that V̄ ∩ Ui = ϕ−1
V (V ).

Problem 2.3.8. Using the previous two exercises, show that the map ϕi : Ui → An

defined above is a homeomorphism (in the Zariski topology).



2.4 First Examples of Varieties

Definition 2.4.1. Let V ⊂ Pn be a projective variety. A subvariety of V is a projective
variety W ⊂ Pn such that W ⊂ V .

Example. Consider the projective variety V defined by the polynomial P (X1, X2) =
(X1 + X2)(X

2
1 + X2

2 ). Then, V contains the varieties V1 and V2 defined by the equations
P1(X1, X2) = X1 +X2 and P2(X1, X2) = X2

1 +X2
2 , respectively.

Problem 2.4.1. Let P (X0, · · · , Xn) = Πi=k
i=1Pi(X0, · · · , Xn), where each Pi is homoge-

neous. Show that the variety V defined by P contains the varieties Vi as subvarieties,
where each Vi is defined by Pi.

Definition 2.4.2. Let V ⊂ Pn (resp. An) be a projective (resp. affine) variety. V is
said to be irreducible if there do not exist distinct, proper subvarieties V1 and V2 such that
V1 ∪ V2 = V .

Problem 2.4.2. Consider the affine variety V ⊂ A3 given by the equations

x21 − x2x3 = 0 (15)

and
x1x3 − x1 = 0. (16)

Show that V is not irreducible, and that V may be written as the union of 3 distinct
varieties.

Problem 2.4.3. Consider the projective variety V ⊂ P3 defined by the equations

P0(X0, X1, X2, X3) = X0X2 −X2
1 (17)

and
P1(X0, X1, X2, X3) = X0X3 −X1X2. (18)

Show that V is not irreducible.

Definition 2.4.3. Let V ⊂ Pn be a variety given by a single homogeneous polynomial P ,
and let d be the degree of P . Then, V is said to be a hypersurface of degree d in Pn.

Example. Let V ⊂ Pn be a projective variety given by the equation

P (X0, · · · , XN ) = α0X0 + · · ·αnXn, (19)

where the αi’s are scalars in C, not all zero. Then V is a hypersurface of degree 1. Such a
hypersurface is known as a hyperplane.

We know introduce an important class of varieties, known as linear varieties.



Definition 2.4.4. Let V ⊂ Pn be a projective variety. V is said to be linear if there is a
collection of hyperplanes {Hi} such that V =

⋂
Hi.

The Noetherian structure of Pn (in the Zariski topology) implies that every linear variety
V is in fact the intersection of finitely many hyperplanes, say H0, · · ·Hk−1. Suppose that
Hi is defined by the equation αi0X0 + · · ·+ αinXN = 0. This defines a k × (n+ 1) matrix
of coefficients (αij) where 0 ≤ i ≤ k − 1 and 0 ≤ i ≤ n. Thinking of this matrix as a linear
map T : An+1 → Ak, we see that the projection of the kernel of this map to Pn is precisely
V .

Problem 2.4.4. Prove rigorously the above assertion; i.e. show that V is ker(T )
modulo scalar equivalence.

Now, we give some definitions pertaining to linear varieties.

Definition 2.4.5. Let V ⊂ Pn be a linear variety. Then, the dimension of V is said to be
dim(ker(T ))−1, where T is the linear transformation associated to any matrix of coefficients
for V . In particular, it does not matter which equations for V we choose, we will always
get a well-defined notion of dimension.

Problem 2.4.5. Let V ⊂ Pn be a projective variety that consists of a single point.
Show that dim(V ) = 0 (Implicitly, you must show that V is linear!). Conversly, let
V ⊂ Pn be a linear variety such that dim(V ) = 0. Show that V consists of a single
point.

There is a way to define the dimension of an arbitrary projective (or affine) variety; however
doing so would take us a bit outside the scope of this power round.

Definition 2.4.6. Let {Hi}n−1
i=1 be a collection of n − 1 hyperplanes in Pn, such that the

coefficient matrix has rank n− 1. Then, the intersection
⋂
Hi is said to be a line.

By Rank-Nullity Theorem, this is equivalent to saying that the linear transformation T
associated to the matrix of coefficients satisfies dim(ker(T )) = 2, and hence dim(V ) = 1.

Example. Let l1 and l2 be two distinct lines in P2. Then, we claim that the intersection
of l1 and l2 is exactly one point. In particular, let l1 be defined by the equation

α0X0 + α1X1 + α2X2 = 0 (20)

and let l2 be defined by the equation

β0X0 + β1X1 + β2X2 = 0 (21)

Consider the matrix of coefficients (
α0 α1 α2

β0 β1 β2

)
Then, as l1 and l2 are distinct, the rows above the above matrix are linearly independent,
and hence the matrix has rank 2. Thus, by the Rank-Nullity Theorem, we find that the
kernel has dimension 1, and the variety defined by the two equation given above above is a
linear variety of dimension 0. Hence, it is a point.



Problem 2.4.6. Consider the Fermat surface V ⊂ P3 given by the equation

P (X0, X1, X2, X3) = X3
0 +X3

1 +X3
2 +X3

3 . (22)

Show that the Fermat surface contains a line.

Problem 2.4.7. Give an example of two lines l1 and l2 in P3 such that l1 and l2 do
not intersect.



2.5 Regular Maps and Morphisms of Varieties

As usual, we first deal with the affine case. From here on out, we will work exclusively in
the Zariski topology.

Definition 2.5.1. Let V ⊂ An be an affine variety, and let U be an open subset. A regular
function on U is a map ϕ : U → A1 with the following property: For each point p ∈ U ,
there is an open neighbourhood Up ⊂ U of p such that restricted to Up, ϕ be be expressed
as a ratio g

h , where g and h are polynomials in n variables, and h(x) ̸= 0 for all x ∈ Up.

Informally, the above definition is saying that regular functions locally are rational
functions. Hopefully some examples will clarify things a bit.

Example. Consider the affine line A1, and the map ϕ : A1 → A1 given by x → x+5. Then
this function is regular; for each point x ∈ A1, notice that A1 is an open neighborhood of
x, and ϕ may be expressed as a ratio g

h on A1 with g(x) = x+ 5 and h(x) = 1.

Example. Consider the open set U = A1 − {0} in A1. Then, the function f(x) = 1
x is

a regular function on U ; for each p ∈ U , U is an open neighborhood of p, and f may be
expressed as a ratio g

h on U with g(x) = 1 and h(x) = x.

Problem 2.5.1. Let f be a polynomial in n variables. Show that as a function
f : An → A1, f is a regular function.

Amazingly, although we have defined regular functions to only locally resemble rational
functions, regular functions have a very rigid global structure. In particular, we have the
following:

Theorem 2.5.2. Let U be an open subset of An, and suppose that U = {x ∈ An | f(x) ̸= 0}
for some polynomial f in n variables. Then every regular function on U takes the form g

fk ,
where g is a polynomial and k is a non-negative integer. In particular, let f be a regular
function on An. Then f is a polynomial in n variables.

Unfortunately, we are not in a position to present a proof of this incredible fact. But,
we can already prove some wonderful things with this theorem.

Problem 2.5.2. Let f be a regular function on A2 − (0, 0). Show that f extends to a
regular function on A2; i.e. there exists a regular function f̂ on A2 such that f̂ = f on
A2 − (0, 0).

We now define regular maps of (quasi-) affine varieties.

Definition 2.5.3. Let V ⊂ An be a (quasi-) affine variety, and let W ⊂ Am be a
(quasi-) affine variety. Then we may represent any map ϕ : V → W as taking (x1, · · · , xn) →
(ϕ1(x1, · · · , xn), · · · , ϕm(x1, · · · , xn)). ϕ is said to be regular map if each coordinate function
ϕi is a regular function.

Example. Let ϕ : An → Am be a map such that each coordinate function is a polynomial.
Then ϕ is regular.



Definition 2.5.4. Let ϕ : V → W be a bijective regular map of of (quasi-) affine varieties,
and suppose that the inverse ϕ−1 : W → V is also regular. Then, ϕ is said to be an
isomorphism of varieties, and the varieties V and W are said to be isomorphic.

The following exercise demonstrates a point of caution.

Problem 2.5.3. Let V ⊂ A2 be the variety defined by the equation x22 = x31. Then,
there is a natural regular map ϕ : A1 → V that sends t → (t2, t3). Show that ϕ is
bijective and both ϕ and ϕ−1 are continuous, but is not an isomorphism. (Hint: You
may use the fact that every closed subset of V is in fact a finite collection of points)

We now turn to the projective case; considerable care must be taken to get a meaningful
definition of “regular map”.

Definition 2.5.5. Let X ⊂ Pn be a projective variety and let U be a Zariski-open subset
of X. Recall the “standard affine chart” of Pn denoted by the collection {Ui}. Identifying
each Ui with An, we say a function U → A1 is regular if it is locally regular; i.e. f restricted
to Ui ∩ U is a regular function (in the affine sense) for each i.

Definition 2.5.6. Let V ⊂ Pn and W ⊂ Pm be (quasi-) projective varieties, and let
ϕ : V → W be a map. Furthermore, let {Ui} be the standard affine chart of Pm, and let
{U ′

j} be the standard affine chart of Pn. ϕ is said to be regular if for each affine Ui ⊂ Pm,

the restriction of ϕ to ϕ−1(Ui) → Ui is locally regular; i.e. on each affine U
′
j ⊂ Pn, the map

U
′
j ∩ ϕ−1(Ui) → Ui is a regular map in the affine sense.

The above definition is extremely convoluted and difficult to work with; we give an
easier criterion for determining regularity below.

Lemma 2.5.7. Let V ⊂ Pn and W ⊂ Pm be (quasi-) projective varieties. Let ϕ : V → W
be a map that is given by [X0, · · · , Xn] → [P0(X0, · · · , Xn), · · · , Pm(X0, · · · , Xn)] where
P0, · · · , Pm are homogeneous polynomials of common degree d that do not simultaneously
vanish at any point in Pn. Then ϕ is a regular map.

Not all regular maps may be characterized in the above manner; in some cases, even
when the polynomials P0, · · · , Pm have a common root, the map ϕ can be “extended” to a
regular map. We state one striking fact about regular maps of projective varieties:

Theorem 2.5.8. Let ϕ : V → Pn be a regular map. Then ϕ(V ) ⊂ Pn is a projective variety.

The analogous statement in the affine case is not true; for instance, consider the map
f : A2 → A2 given by (x, y) → (x, xy). Then f is clearly regular; but the image of f is not
an affine variety.

Problem 2.5.4. Prove rigorously that the image of the map f is not an affine variety.
(Hint: Is the image of f classically closed?)

One beautiful consequence of Theorem 2.5.8:



Problem 2.5.5. Let V be a projective variety, and let f : V → A1 be a regular function
on V . Show that f(V ) is a finite collection of points. (Hint: Choose an embedding
ϕ : A1 → P1, i.e. identify A1 with some standard affine subset of P1. Then consider the
composition ϕ ◦ f : V → P1, and argue that ϕ ◦ f is regular. Now apply Theorem 2.5.8
to conclude that ϕ ◦ f(V ) is a projective variety. What are the projective subvarieties
of P1?)



2.6 27 lines Theorem on the Fermat Surface

The goal of this section is for you to prove the following:

Theorem 2.6.1. Let V ⊂ P3 be the variety defined by the equation X3
0 +X3

1 +X3
2 +X3

3 = 0.
Then V contains exactly 27 lines.

To do this, we will break up the proof into steps. First, show the following:

Problem 2.6.1. Let l be a line in P3. Show that l may be described as the common
zero locus of 2 linear polynomials. (Hint: Linear Algebra.)

Now, show the following:

Problem 2.6.2. Let l be a line in P3. Show that, up to a permutation of coordinates,
l may be defined by the equations

X0 = α2X2 + α3X3

X1 = β2X2 + β3X3

Problem 2.6.3. Let l be a line in P3 of the form

X0 = α2X2 + α3X3

X1 = β2X2 + β3X3

Show that l is contained in the Fermat surface if and only if

α3
2 + β3

2 + 1 = 0

α3
3 + β3

3 + 1 = 0

α2
2α3 + β2

2β3 = 0

α2α
2
3 + β2β

3
3 = 0

Problem 2.6.4. Consider the system of equations

α3
2 + β3

2 + 1 = 0

α3
3 + β3

3 + 1 = 0

α2
2α3 + β2

2β3 = 0

α2α
2
3 + β2β

3
3 = 0

where α2, α3, β2, β3 ∈ C. Show that this system of equations has no solutions if
α2, α3, β2, β3 are all nonzero. Furthermore, show that this system of equations has
exactly 18 solutions.



Notice that the equation X3
0 + X3

1 + X3
2 + X3

3 = 0 is invariant under permutation of
coordinates. With this in mind, prove the following:

Problem 2.6.5. Show that the Fermat surface contains exactly 27 lines. (Possible
Hint: Produce 18×6 = 108 pairs of equations such that the lines defined by these pairs
of equations all lie in the Fermat surface. Let L be the set of all such pairs of equations.
Now, if l is a line in the Fermat surface, there will exactly 4 pairs of equations in L

that define l. Therefore the number of lines in the Fermat surface is 18×6
4 = 27.)

As a final note, we state (without proof) the 27 lines Theorem in full generality:

Theorem 2.6.2. (27 lines on a cubic surface) Let V ⊂ P3 be a smooth3 cubic (hyper)surface
in P3. Then V contains exactly 27 lines.

This concludes the power round. Congratulations on finishing!

3We haven’t defined what it means for a variety to be smooth. Intuitively, you can think of a smooth
variety as having a “well-behaved” tangent space at each point.
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