P U M .. C

Algebra A

- 1. Let x and y be positive real numbers that satisfy $(\log x)^2 + (\log y)^2 = \log(x^2) + \log(y^2)$. Compute the maximum possible value of $(\log xy)^2$.
- 2. Let $f(x) = x^2 + 4x + 2$. Let r be the difference between the largest and smallest real solutions of the equation f(f(f(f(x)))) = 0. Then $r = a^{\frac{p}{q}}$ for some positive integers a, p, q so a is square-free and p, q are relatively prime positive integers. Compute a + p + q.
- 3. Let Q be a quadratic polynomial. If the sum of the roots of $Q^{100}(x)$ (where $Q^i(x)$ is defined by $Q^1(x) = Q(x), Q^i(x) = Q(Q^{i-1}(x))$ for integers $i \geq 2$) is 8 and the sum of the roots of Q is S, compute $|\log_2(S)|$.
- 4. Let \mathbb{N}_0 be the set of non-negative integers. There is a triple (f, a, b), where f is a function from \mathbb{N}_0 to \mathbb{N}_0 and $a, b \in \mathbb{N}_0$, that satisfies the following conditions:
 - 1) f(1) = 2
 - $2) f(a) + f(b) \le 2\sqrt{f(a)}$
 - 3) For all n > 0, we have f(n) = f(n-1)f(b) + 2n f(b)

Find the sum of all possible values of f(b + 100).

- 5. Let $\omega = e^{\frac{2\pi i}{2017}}$ and $\zeta = e^{\frac{2\pi i}{2019}}$. Let $S = \{(a,b) \in \mathbb{Z} \mid 0 \le a \le 2016, 0 \le b \le 2018, (a,b) \ne (0,0)\}$. Compute $\prod_{(a,b) \in S} (\omega^a \zeta^b)$.
- 6. A weak binary representation of a nonnegative integer n is a representation $n = a_0 + 2 \cdot a_1 + 2^2 \cdot a_2 + \ldots$ such that $a_i \in \{0, 1, 2, 3, 4, 5\}$. Determine the number of such representations for 513.
- 7. A doubly-indexed sequence $a_{m,n}$, for m and n nonnegative integers, is defined as follows.
 - (a) $a_{m,0} = 0$ for all m > 0 and $a_{0,0} = 1$.
 - (b) $a_{m,1} = 0$ for all m > 1, and $a_{1,1} = 1$, $a_{0,1} = 0$.
 - (c) $a_{0,n} = a_{0,n-1} + a_{0,n-2}$ for all $n \ge 2$
 - (d) $a_{m,n} = a_{m,n-1} + a_{m,n-2} + a_{m-1,n-1} a_{m-1,n-2}$ for all $m > 0, n \ge 2$.

Then there exists a unique value of x so $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_{m,n}x^m}{3^{n-m}} = 1$. Find $\lfloor 1000x^2 \rfloor$.

8. For real numbers a and b, define the sequence $\{x_{a,b}(n)\}$ as follows: $x_{a,b}(1) = a$, $x_{a,b}(2) = b$, and for n > 1, $x_{a,b}(n+1) = (x_{a,b}(n-1))^2 + (x_{a,b}(n))^2$. For real numbers c and d, define the sequence $\{y_{c,d}(n)\}$ as follows: $y_{c,d}(1) = c$, $y_{c,d}(2) = d$, and for n > 1, $y_{c,d}(n+1) = (y_{c,d}(n-1)+y_{c,d}(n))^2$. Call (a,b,c) a good triple if there exists d such that for all n sufficiently large, $y_{c,d}(n) = (x_{a,b}(n))^2$. For some (a,b) there are exactly three values of c that make (a,b,c) a good triple. Among these pairs (a,b), compute the maximum value of $\lfloor 100(a+b) \rfloor$.

1