Algebra A

1. Let x and y be positive real numbers that satisfy $(\log x)^{2}+(\log y)^{2}=\log \left(x^{2}\right)+\log \left(y^{2}\right)$. Compute the maximum possible value of $(\log x y)^{2}$.
2. Let $f(x)=x^{2}+4 x+2$. Let r be the difference between the largest and smallest real solutions of the equation $f(f(f(f(x))))=0$. Then $r=a^{\frac{p}{q}}$ for some positive integers a, p, q so a is square-free and p, q are relatively prime positive integers. Compute $a+p+q$.
3. Let Q be a quadratic polynomial. If the sum of the roots of $Q^{100}(x)$ (where $Q^{i}(x)$ is defined by $Q^{1}(x)=Q(x), Q^{i}(x)=Q\left(Q^{i-1}(x)\right)$ for integers $\left.i \geq 2\right)$ is 8 and the sum of the roots of Q is S, compute $\left|\log _{2}(S)\right|$.
4. Let \mathbb{N}_{0} be the set of non-negative integers. There is a triple (f, a, b), where f is a function from \mathbb{N}_{0} to \mathbb{N}_{0} and $a, b \in \mathbb{N}_{0}$, that satisfies the following conditions:
1) $f(1)=2$
2) $f(a)+f(b) \leq 2 \sqrt{f(a)}$
3) For all $n>0$, we have $f(n)=f(n-1) f(b)+2 n-f(b)$

Find the sum of all possible values of $f(b+100)$.
5. Let $\omega=e^{\frac{2 \pi i}{2017}}$ and $\zeta=e^{\frac{2 \pi i}{2019}}$. Let $S=\{(a, b) \in \mathbb{Z} \mid 0 \leq a \leq 2016,0 \leq b \leq 2018,(a, b) \neq(0,0)\}$. Compute $\prod_{(a, b) \in S}\left(\omega^{a}-\zeta^{b}\right)$.
6. A weak binary representation of a nonnegative integer n is a representation $n=a_{0}+2 \cdot a_{1}+$ $2^{2} \cdot a_{2}+\ldots$ such that $a_{i} \in\{0,1,2,3,4,5\}$. Determine the number of such representations for 513.
7. A doubly-indexed sequence $a_{m, n}$, for m and n nonnegative integers, is defined as follows.
(a) $a_{m, 0}=0$ for all $m>0$ and $a_{0,0}=1$.
(b) $a_{m, 1}=0$ for all $m>1$, and $a_{1,1}=1, a_{0,1}=0$.
(c) $a_{0, n}=a_{0, n-1}+a_{0, n-2}$ for all $n \geq 2$
(d) $a_{m, n}=a_{m, n-1}+a_{m, n-2}+a_{m-1, n-1}-a_{m-1, n-2}$ for all $m>0, n \geq 2$.

Then there exists a unique value of x so $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_{m, n} x^{m}}{3^{n-m}}=1$. Find $\left\lfloor 1000 x^{2}\right\rfloor$.
8. For real numbers a and b, define the sequence $\left\{x_{a, b}(n)\right\}$ as follows: $x_{a, b}(1)=a, x_{a, b}(2)=b$, and for $n>1, x_{a, b}(n+1)=\left(x_{a, b}(n-1)\right)^{2}+\left(x_{a, b}(n)\right)^{2}$. For real numbers c and d, define the sequence $\left\{y_{c, d}(n)\right\}$ as follows: $y_{c, d}(1)=c, y_{c, d}(2)=d$, and for $n>1, y_{c, d}(n+1)=$ $\left(y_{c, d}(n-1)+y_{c, d}(n)\right)^{2}$. Call (a, b, c) a good triple if there exists d such that for all n sufficiently large, $y_{c, d}(n)=\left(x_{a, b}(n)\right)^{2}$. For some (a, b) there are exactly three values of c that make (a, b, c) a good triple. Among these pairs (a, b), compute the maximum value of $\lfloor 100(a+b)\rfloor$.

