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Algebra A Solutions

1. Let = and y be positive real numbers that satisfy (logx)? + (logy)? = log(x?) + log(y?).

Compute the maximum possible value of (log zy)?.
Proposed by: Matthew Kendall

Answer:

Let u = logz and v = logy. Then u? + v? = 2u + 2v. Completing the square gives (u — 1) +
(v —1)2? = 2, so the equation given is a circle of radius v/2 centered at (1,1) on the uv plane.

Let logxy = u + v = k, so we wish to maximize k2. Note that the line u + v is tangent to the
circle when the origin is a distance of 0 or 2v/2 from the line. The latter gives u = v = 2, so
k = 4, making the maximum k2 = .

. Let f(z) = 2% +4x +2. Let 7 be the difference between the largest and smallest real solutions

of the equation f(f(f(f(xz)))) = 0. Then r = a4 for some positive integers a,p,q so a is
square-free and p, ¢ are relatively prime positive integers. Compute a + p + gq.

Proposed by: Kevin Feng

Answer:

Note that f(x) = 22+4x+2 = (r+2)2—2. Then f2(z) = ((z+2)2-2)+2)? -2 = (z+2)* - 2.
It is casy to see by induction that f"(z) = (z +2)%" — 2, so fi(z) = (z +2)%" — 2.

Then the real solutions to f4(z) = 0 are at z +2 = £+ V/2, or # = —2 + /2. Hence, the
difference between the two of them are 2 /2 = 2%, which gives us an answer of 2+ 16 + 17 =

[35]

. Let Q be a quadratic polynomial. If the sum of the roots of Q% (z) (where Q*(z) is defined
by Q'(z) = Q(x),Q(z) = Q(Q*~!(x)) for integers i > 2) is 8 and the sum of the roots of Q
is S, compute |log,(5)].

Proposed by: Matthew Kendall

Answer: m

Let the sum of the roots of @7 (z) be S for j = 1,...,2019. Our claim is S;j41 = 25;. Let
Q(z) = a(z — r)(z — s), where r and s are the roots of (). Note that

Q" (@) = a(Q(x) — 1) (Q(x) — ),

so the solutions to Q’*!(z) = 0 are the solutions to Q7(z) = r and Q7 (z) = s. Since the
degree of @7 is at least 1, the sum of the roots to Q’(z) = r and @Q’(x) = s are both S;, so
Sj+1 = Sj + Sj = 2Sj.

From our recursion we get Sigo = 2°°S;. Therefore, S; = 55 and |log,(S)| = .

. Let Ny be the set of non-negative integers. There is a triple (f,a,b), where f is a function
from Ny to Ny and a,b € Ny, that satisfies the following conditions:

D f(1)=2

2) f(a) + f(b) < 2v/f(a)

3) For all n > 0, we have f(n) = f(n—1)f(b) +2n — f(b)
Find the sum of all possible values of f(b+ 100).
Proposed by: Rahul Saha
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Answer:

‘We’ll focus on condition 2.

By AM-GM (or squaring and rearranging),

21/ F(a)f(0) < f(a) + f(b) < 2¢/[(a)

which implies f(b) < 1. Since f(b) is as integer we must have f(b) =0, 1.
Substituting in condition (3) gives us the possibilities f(n) = 2n for n > 0 (for f(b) = 0) and
a recursion which easily amounts to f(n) = n? + 1.

For the first function, since f(n) = 2n for n > 0 and f(b) = 0, we must necessarily have b = 0.
So f(b+ 100) = f(100) = 200.

In the second case, similarly b = 0 and f(b+ 100) = 100% + 1 = 10001.

Summing gives us the answer | 10201 |.

Quick check: In both cases, if we have a = b = 0, condition 2 holds. Condition 1 works for
both functions too. So our functions do satisfy the problem’s statement.

27

5. Let w = e0i7 and ¢ = e015. Let S = {(a,b) € Z | 0 < a < 2016,0 < b < 2018, (a, b) # (0,0)}.
Compute [[ (w®—¢Y).
(a,b)eS

Proposed by: Frank Lu

Answer:

2018 2018
First, fix a. Note that [] (z—(¢%) = 2291 — 1. Hence, if a # 0, ] (w® —¢?) = w?°19% — 1. For
b=0 b=0
2018 2018 2018 2018
a = 0, we have that thisis [] (1—¢?) = 2019, since [] (z—¢*) = [[ (—¢%)/(z—1) = 3 2’
b=1 b=1 b=0 5=0

2016
Thus, our product becomes [] (w?°19¢—1)%2019. But note that this then becomes 2017%2019,
a=1

since the w2019 are just a permutation of the 2017th roots of unity besides 1 (as 2017 and
2019 are relatively prime), which is then just | 4072323 |.

6. A weak binary representation of a nonnegative integer n is a representation n = ag +2- a1 +
22 . ag + ... such that a; € {0,1,2,3,4,5}. Determine the number of such representations for
513.

Proposed by: Frank Lu

Answer:

Let N(k) be the number of such representations for k. We know that N(0) = 1, N(1) =
1,N(2) = 2,N(3) = 2, and N(4) = 4. We can see, based on the choice of ag, that N(2k) =
N(2k+1) = N(k)+N(k—1)+N(k—2). To make use of this recurrence relation, we define two
sequences. First, define z;, = N(2k). Observe then that xop — x2p_1 = N(4k) — N(4k —2) =
N(2k)— N(2k—3) = ), —xp_2, and that zog41 — Top = Tk — Tk—1 by a similar token. Now, let
Yk = T — Tk—1. Lhen, our recurrence relation becomes yor+1 = yr and that yor, = yi + yr—1.
From our earlier cases before we see that y; = 1 and y» = 2. Based on the recurrence in the
odd case, we see that ysx_; = 1 for each integer 3.
2k 2
Claim: Y gy, =31

i=2k—1-1
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Proof: We inductively show this. For k = 2 we can easily verify this. Now, given the k

ok+1_g 2k _2 2k_1
case, note that > y; = > Y241+ Y. yoi- Using our recurrence, this becomes
i=2k—1 i=2k—1_1 i=2k—1
2k _1 2k _1 2k _1

> yit+ > yi+ >, yi—1. But knowing that yor_q = yor—1_; = 1 yields that this
i=2k—1_] i=2k—1 i=2k—1
2k 2
is just 3x Y. y; = 381 x3 = 3% proving the inductive case and proving the claim.
i=2k—1_1
256
Finally, observe that N(513) = N(512) = xa56 = xo + Y ¥:, which using our claim is just
i=1
1+34+324...4+3" 4 ya55 + yas6. A final observation that yo.r, = k + 1 yields the answer

(3% —1)/2+14+9=|3290]|.
. A doubly-indexed sequence a,, ,, for m and n nonnegative integers, is defined as follows.

@m0 =0 for all m > 0 and ag = 1.
am,1 =0 forallm > 1, and a1,; =1,a0,1 = 0.
ag,n = Agn—1 + @o,n—2 for all n > 2

Um,n = Gm,n—1 + Am n—2 + Um—1,n—1 — Adm—-1,n-2 for all m > Ov” > 2.

1S SRS, ] m
Then there exists a unique value of = so ZO ZO fpnt— = 1. Find [100027].
m=Un=

Proposed by: Frank Lu
Answer:

Define the sequence of polynomials P, (z) by Py(xz) = 1, Pi(z) = z, and for n > 2 P,(x) =
(x +1)Py_1(x) — (x — 1)P—2(x). Observe that our given sequence is uniquely determined
by the values when n = 0 and n = 1, over all m. Letting b,,, be the coefficient of 2™ in
P, (z), our recurrence becomes by, n, = bim.n—1 + bnn—2 + bm—1,n—1 — b—1,n—2, and that the
b, satisfy the same initial conditions that are given. It thus follows that our b sequence

o0
is the exact same as the given a sequence. Now, define the function g(x,y) = > Pn(x)y".
n=0

Observe that, based on our recurrence and the initial conditions, we have that g(z,y) =
L+axy+ (x+ Dy(g(z,y) — 1) — (z — 1)y*(g9(z, y)). Rearranging this and solving for g gives us

now that g(x,y) = MW But our desired sum can be written as g(3z,1/3). Let

:Lorthat%z‘TQ“—i—‘f’ or u = =

u = 3x. Thus, our desired u is so that + 2
) T(u—1 97 2

2
3
)— 35 (u+1)+1
which means that z = 1. This gives us an answer of [1300| = 20| =

. For real numbers a and b, define the sequence {z,(n)} as follows: z,4(1) = a, z45(2) = b,
and for n > 1, zop(n + 1) = (@ep(n — 1))* + (zap(n))?. For real numbers ¢ and d, define
the sequence {y.aq(n)} as follows: y.q4(1) = ¢, yc,a(2) = d, and for n > 1, yeqa(n +1) =
(Ye.a(n—1)+yc.a(n))?. Call (a,b,c) a good triple if there exists d such that for all n sufficiently
large, ye.a(n) = (z44(n))?. For some (a,b) there are exactly three values of ¢ that make (a, b, )
a good triple. Among these pairs (a,b), compute the maximum value of |100(a + b)].

Proposed by: Eric Neyman

Answer:

Define (a, b, ¢, d) to be good if for n large enough, y. 4(n) = (z4,(n))?. Fix a good quadruple
(a,b,c,d). For brevity of notation, we will denote z,(n) as z,, and yc,q4(n) as yn.
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We claim that y,, = x,2 for all n > 3. Suppose for contradiction that this is not the case, and
let k > 3 be such that y, = 22 for all n > k, but y; # z7. We have
Yk+2 = $i+2
(s + Yrt1)® = (2} + 2741)
Y+ Yre1 = £(2F + 274)
Yk + Yes1 = (@} + Yrs1)-

2

We can’t choose the plus sign because then y; = xi, which we assumed to not be the case.
Thus, yr + yr+1 = —Ii — Yk+1, SO

Yb = —T} — 2k = — 74 — 2(yr—1 + yx)> < 0.
But yx = (Yr—2+yk—1)%> >0, so y = 0. This means that a:i = 0, so x = 0, contradicting our
assumption that yi # x7. Therefore, y,, = 22 for all n > 3.

Suppose that (a, b, c,d) is good. We have
T =a,Ty = b,xz = a® + b%, x4 = b* + (a® + b*)?
and
p=cyp=dys=(c+d?y=(d+(c+d?)>
Since y3 = 23 and y, = 22, we have the equations
c+d=+(a® +b?) (1)
and
d+ (c+d)* = £(b* + (a® +b?)?). (2)
Plugging in (a? + v?)? for (¢ + d)? in (2), we have
d+ (a® + %)% = £(b + (a® + b*)?).
This gives two possibilities: d = b% or d = —b? — 2(a® + b?)2.
Suppose that d = b?. Then (1) gives ¢ + b*> = 4(a® + b?), so c is either a? or —a? — 2b.
Suppose that d = —b% — 2(a? + b?)2. Then (2) gives

c—b* —2(a® + b*)? = +(a® + b?),
so c is either 2(a? + b%)% — a? or a® + 2b% + 2(a® + b?)2.

Note that all four of the values of ¢ that are listed work, because all our steps can be reversed
and if xi =y and a:iH = Y41, then 22 =y, for all n > k.

We want exactly two of the four listed values of ¢ to be equal. Note that if @ = 0 then
the four values of ¢ are 0, —2b%, 2b%, and 2b + 2b*, which are all different unless b = 0,
in which case they are all the same. Thus, we may assume that a # 0. This means that
2(a? +b?)? — a? < a® + 2b* + 2(a® + b*)?, a? < a® + 2b% + 2(a® + b?)%, —a? — 2b? < a?, and
—a? — 2b% < 2(a® +b?)? — a%. Thus, for two of the values of ¢ to be the same, we must have
2(a® + b?)? — a? = a?, ie. (a® +b%)? = a® Thus, a® + b* = +a, so (a+ %)2 + b = 1
This means that (a,b) is a point on either the circle with radius 3 centered at (3,0) or the
circle with radius 3 centered at (5,0). a + b is maximized at the point where the rightmost

circle is tangent to a line with slope —1 that is ”furthest right.” This happens at the point
(%+ V2 ﬂ),where a+b:%+§ = #

404

Thus, our answer is [50 + 50v/2| = 50 + 70 = | 120 |.



