
Algebra A Solutions

1. Let x and y be positive real numbers that satisfy (log x)2 + (log y)2 = log(x2) + log(y2).
Compute the maximum possible value of (log xy)2.

Proposed by: Matthew Kendall

Answer: 16

Let u = log x and v = log y. Then u2 + v2 = 2u+ 2v. Completing the square gives (u− 1)2 +
(v − 1)2 = 2, so the equation given is a circle of radius

√
2 centered at (1, 1) on the uv plane.

Let log xy = u+ v = k, so we wish to maximize k2. Note that the line u+ v is tangent to the
circle when the origin is a distance of 0 or 2

√
2 from the line. The latter gives u = v = 2, so

k = 4, making the maximum k2 = 16 .

2. Let f(x) = x2 + 4x+ 2. Let r be the difference between the largest and smallest real solutions

of the equation f(f(f(f(x)))) = 0. Then r = a
p
q for some positive integers a, p, q so a is

square-free and p, q are relatively prime positive integers. Compute a+ p+ q.

Proposed by: Kevin Feng

Answer: 35

Note that f(x) = x2+4x+2 = (x+2)2−2. Then f2(x) = ((x+2)2−2)+2)2−2 = (x+2)4−2.

It is easy to see by induction that fn(x) = (x+ 2)2
n − 2, so f4(x) = (x+ 2)2

4 − 2.

Then the real solutions to f4(x) = 0 are at x + 2 = ± 16
√

2, or x = −2 ± 16
√

2. Hence, the

difference between the two of them are 2 16
√

2 = 2
17
16 , which gives us an answer of 2 + 16 + 17 =

35 .

3. Let Q be a quadratic polynomial. If the sum of the roots of Q100(x) (where Qi(x) is defined
by Q1(x) = Q(x), Qi(x) = Q(Qi−1(x)) for integers i ≥ 2) is 8 and the sum of the roots of Q
is S, compute | log2(S)|.
Proposed by: Matthew Kendall

Answer: 96

Let the sum of the roots of Qj(x) be Sj for j = 1, . . . , 2019. Our claim is Sj+1 = 2Sj . Let
Q(x) = a(x− r)(x− s), where r and s are the roots of Q. Note that

Qj+1(x) = a(Qj(x)− r)(Qj(x)− s),

so the solutions to Qj+1(x) = 0 are the solutions to Qj(x) = r and Qj(x) = s. Since the
degree of Qj is at least 1, the sum of the roots to Qj(x) = r and Qj(x) = s are both Sj , so
Sj+1 = Sj + Sj = 2Sj .

From our recursion we get S100 = 299S1. Therefore, S1 = 8
299 and | log2(S)| = 96 .

4. Let N0 be the set of non-negative integers. There is a triple (f, a, b), where f is a function
from N0 to N0 and a, b ∈ N0, that satisfies the following conditions:

1) f(1) = 2

2) f(a) + f(b) ≤ 2
√
f(a)

3) For all n > 0, we have f(n) = f(n− 1)f(b) + 2n− f(b)

Find the sum of all possible values of f(b+ 100).

Proposed by: Rahul Saha
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Answer: 10201

We’ll focus on condition 2.

By AM-GM (or squaring and rearranging),

2
√
f(a)f(b) ≤ f(a) + f(b) ≤ 2

√
f(a)

which implies f(b) ≤ 1. Since f(b) is as integer we must have f(b) = 0, 1.

Substituting in condition (3) gives us the possibilities f(n) = 2n for n > 0 (for f(b) = 0) and
a recursion which easily amounts to f(n) = n2 + 1.

For the first function, since f(n) = 2n for n > 0 and f(b) = 0, we must necessarily have b = 0.
So f(b+ 100) = f(100) = 200.

In the second case, similarly b = 0 and f(b+ 100) = 1002 + 1 = 10001.

Summing gives us the answer 10201 .

Quick check: In both cases, if we have a = b = 0, condition 2 holds. Condition 1 works for
both functions too. So our functions do satisfy the problem’s statement.

5. Let ω = e
2πi
2017 and ζ = e

2πi
2019 . Let S = {(a, b) ∈ Z | 0 ≤ a ≤ 2016, 0 ≤ b ≤ 2018, (a, b) 6= (0, 0)}.

Compute
∏

(a,b)∈S
(ωa − ζb).

Proposed by: Frank Lu

Answer: 4072323

First, fix a. Note that
2018∏
b=0

(x− ζb) = x2019−1. Hence, if a 6= 0,
2018∏
b=0

(ωa− ζb) = ω2019a−1. For

a = 0, we have that this is
2018∏
b=1

(1−ζb) = 2019, since
2018∏
b=1

(x−ζb) =
2018∏
b=0

(x−ζb)/(x−1) =
2018∑
b=0

xb.

Thus, our product becomes
2016∏
a=1

(ω2019a−1)∗2019. But note that this then becomes 2017∗2019,

since the ω2019a are just a permutation of the 2017th roots of unity besides 1 (as 2017 and

2019 are relatively prime), which is then just 4072323 .

6. A weak binary representation of a nonnegative integer n is a representation n = a0 + 2 · a1 +
22 · a2 + . . . such that ai ∈ {0, 1, 2, 3, 4, 5}. Determine the number of such representations for
513.

Proposed by: Frank Lu

Answer: 3290

Let N(k) be the number of such representations for k. We know that N(0) = 1, N(1) =
1, N(2) = 2, N(3) = 2, and N(4) = 4. We can see, based on the choice of a0, that N(2k) =
N(2k+1) = N(k)+N(k−1)+N(k−2). To make use of this recurrence relation, we define two
sequences. First, define xk = N(2k). Observe then that x2k − x2k−1 = N(4k)−N(4k − 2) =
N(2k)−N(2k−3) = xk−xk−2, and that x2k+1−x2k = xk−xk−1 by a similar token. Now, let
yk = xk − xk−1. Then, our recurrence relation becomes y2k+1 = yk and that y2k = yk + yk−1.
From our earlier cases before we see that y1 = 1 and y2 = 2. Based on the recurrence in the
odd case, we see that y2k−1 = 1 for each integer i.

Claim:
2k−2∑

i=2k−1−1
yi = 3k−1.
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Proof: We inductively show this. For k = 2 we can easily verify this. Now, given the k

case, note that
2k+1−2∑
i=2k−1

yi =
2k−2∑

i=2k−1−1
y2i+1 +

2k−1∑
i=2k−1

y2i. Using our recurrence, this becomes

2k−1∑
i=2k−1−1

yi +
2k−1∑

i=2k−1

yi +
2k−1∑

i=2k−1

yi−1. But knowing that y2k−1 = y2k−1−1 = 1 yields that this

is just 3 ∗
2k−2∑

i=2k−1−1
yi = 3k−1 ∗ 3 = 3k, proving the inductive case and proving the claim.

Finally, observe that N(513) = N(512) = x256 = x0 +
256∑
i=1

yi, which using our claim is just

1 + 3 + 32 + . . . + 37 + y255 + y256. A final observation that y2∗k = k + 1 yields the answer
(38 − 1)/2 + 1 + 9 = 3290 .

7. A doubly-indexed sequence am,n, for m and n nonnegative integers, is defined as follows.

(a) am,0 = 0 for all m > 0 and a0,0 = 1.

(b) am,1 = 0 for all m > 1, and a1,1 = 1, a0,1 = 0.

(c) a0,n = a0,n−1 + a0,n−2 for all n ≥ 2

(d) am,n = am,n−1 + am,n−2 + am−1,n−1 − am−1,n−2 for all m > 0, n ≥ 2.

Then there exists a unique value of x so
∞∑

m=0

∞∑
n=0

am,nx
m

3n−m = 1. Find b1000x2c.

Proposed by: Frank Lu

Answer: 27

Define the sequence of polynomials Pn(x) by P0(x) = 1, P1(x) = x, and for n ≥ 2 Pn(x) =
(x + 1)Pn−1(x) − (x − 1)Pn−2(x). Observe that our given sequence is uniquely determined
by the values when n = 0 and n = 1, over all m. Letting bm,n be the coefficient of xm in
Pn(x), our recurrence becomes bm,n = bm,n−1 + bm,n−2 + bm−1,n−1 − bm−1,n−2, and that the
bm,n satisfy the same initial conditions that are given. It thus follows that our b sequence

is the exact same as the given a sequence. Now, define the function g(x, y) =
∞∑

n=0
Pn(x)yn.

Observe that, based on our recurrence and the initial conditions, we have that g(x, y) =
1 + xy+ (x+ 1)y(g(x, y)− 1)− (x− 1)y2(g(x, y)). Rearranging this and solving for g gives us
now that g(x, y) = 1−y

y2(x−1)−y(x+1)+1 . But our desired sum can be written as g(3x, 1/3). Let

u = 3x. Thus, our desired u is so that
2
3

1
9 (u−1)−

1
3 (u+1)+1

= 1, or that 2
3 = −2u

9 + 5
9 , or u = −1

2 ,

which means that x = −1
6 . This gives us an answer of b 100036 c = b 2509 c = 27

8. For real numbers a and b, define the sequence {xa,b(n)} as follows: xa,b(1) = a, xa,b(2) = b,
and for n > 1, xa,b(n + 1) = (xa,b(n − 1))2 + (xa,b(n))2. For real numbers c and d, define
the sequence {yc,d(n)} as follows: yc,d(1) = c, yc,d(2) = d, and for n > 1, yc,d(n + 1) =
(yc,d(n−1)+yc,d(n))2. Call (a, b, c) a good triple if there exists d such that for all n sufficiently
large, yc,d(n) = (xa,b(n))2. For some (a, b) there are exactly three values of c that make (a, b, c)
a good triple. Among these pairs (a, b), compute the maximum value of b100(a+ b)c.
Proposed by: Eric Neyman

Answer: 120

Define (a, b, c, d) to be good if for n large enough, yc,d(n) = (xa,b(n))2. Fix a good quadruple
(a, b, c, d). For brevity of notation, we will denote xa,b(n) as xn and yc,d(n) as yn.
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We claim that yn = xn2 for all n ≥ 3. Suppose for contradiction that this is not the case, and
let k ≥ 3 be such that yn = x2n for all n > k, but yk 6= x2k. We have

yk+2 = x2k+2

(yk + yk+1)2 = (x2k + x2k+1)2

yk + yk+1 = ±(x2k + x2k+1)

yk + yk+1 = ±(x2k + yk+1).

We can’t choose the plus sign because then yk = x2k, which we assumed to not be the case.
Thus, yk + yk+1 = −x2k − yk+1, so

yk = −x2k − 2yk+1 = −x2k − 2(yk−1 + yk)2 ≤ 0.

But yk = (yk−2 + yk−1)2 ≥ 0, so yk = 0. This means that x2k = 0, so xk = 0, contradicting our
assumption that yk 6= x2k. Therefore, yn = x2n for all n ≥ 3.

Suppose that (a, b, c, d) is good. We have

x1 = a, x2 = b, x3 = a2 + b2, x4 = b2 + (a2 + b2)2

and
y1 = c, y2 = d, y3 = (c+ d)2, y4 = (d+ (c+ d)2)2.

Since y3 = x23 and y4 = x24, we have the equations

c+ d = ±(a2 + b2) (1)

and
d+ (c+ d)2 = ±(b2 + (a2 + b2)2). (2)

Plugging in (a2 + b2)2 for (c+ d)2 in (2), we have

d+ (a2 + b2)2 = ±(b2 + (a2 + b2)2).

This gives two possibilities: d = b2 or d = −b2 − 2(a2 + b2)2.

Suppose that d = b2. Then (1) gives c+ b2 = ±(a2 + b2), so c is either a2 or −a2 − 2b2.

Suppose that d = −b2 − 2(a2 + b2)2. Then (2) gives

c− b2 − 2(a2 + b2)2 = ±(a2 + b2),

so c is either 2(a2 + b2)2 − a2 or a2 + 2b2 + 2(a2 + b2)2.

Note that all four of the values of c that are listed work, because all our steps can be reversed
and if x2k = yk and x2k+1 = yk+1, then x2n = yn for all n ≥ k.

We want exactly two of the four listed values of c to be equal. Note that if a = 0 then
the four values of c are 0, −2b2, 2b4, and 2b2 + 2b4, which are all different unless b = 0,
in which case they are all the same. Thus, we may assume that a 6= 0. This means that
2(a2 + b2)2 − a2 < a2 + 2b2 + 2(a2 + b2)2, a2 < a2 + 2b2 + 2(a2 + b2)2, −a2 − 2b2 < a2, and
−a2 − 2b2 < 2(a2 + b2)2 − a2. Thus, for two of the values of c to be the same, we must have

2(a2 + b2)2 − a2 = a2, i.e. (a2 + b2)2 = a2. Thus, a2 + b2 = ±a, so
(
a± 1

2

)2
+ b2 = 1

4 .

This means that (a, b) is a point on either the circle with radius 1
2 centered at

(
1
2 , 0
)

or the

circle with radius 1
2 centered at

(−1
2 , 0

)
. a+ b is maximized at the point where the rightmost

circle is tangent to a line with slope −1 that is ”furthest right.” This happens at the point(
1
2 +

√
2
4 ,
√
2
4

)
, where a+ b = 1

2 +
√
2
2 = 1+

√
2

2 .

Thus, our answer is b50 + 50
√

2c = 50 + 70 = 120 .
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