PUM.C

Algebra B

- 1. Let a, b be positive integers such that a+b = 10. Let $\frac{p}{q}$ be the difference between the maximum and minimum possible values of $\frac{1}{a} + \frac{1}{b}$, where p and q are relatively prime positive integers. Compute p + q.
- 2. If x is a real number so $3^x = 27x$, compute $\log_3(\frac{3^{3^x}}{x^{3^3}})$.
- 3. Let x and y be positive real numbers that satisfy $(\log x)^2 + (\log y)^2 = \log(x^2) + \log(y^2)$. Compute the maximum possible value of $(\log xy)^2$.
- 4. Let $f(x) = x^2 + 4x + 2$. Let r be the difference between the largest and smallest real solutions of the equation f(f(f(f(x)))) = 0. Then $r = a^{\frac{p}{q}}$ for some positive integers a, p, q so a is square-free and p, q are relatively prime positive integers. Compute a + p + q.
- 5. Let Q be a quadratic polynomial. If the sum of the roots of $Q^{100}(x)$ (where $Q^i(x)$ is defined by $Q^1(x) = Q(x), Q^i(x) = Q(Q^{i-1}(x))$ for integers $i \ge 2$) is 8 and the sum of the roots of Q is S, compute $|\log_2(S)|$.
- 6. Let \mathbb{N}_0 be the set of non-negative integers. There is a triple (f, a, b), where f is a function from \mathbb{N}_0 to \mathbb{N}_0 and $a, b \in \mathbb{N}_0$, that satisfies the following conditions:
 - 1) f(1) = 2
 - 2) $f(a) + f(b) \le 2\sqrt{f(a)}$
 - 3) For all n > 0, we have f(n) = f(n-1)f(b) + 2n f(b)

Find the sum of all possible values of f(b + 100).

- 7. Let $\omega = e^{\frac{2\pi i}{2017}}$ and $\zeta = e^{\frac{2\pi i}{2019}}$. Let $S = \{(a, b) \in \mathbb{Z} \mid 0 \le a \le 2016, 0 \le b \le 2018, (a, b) \ne (0, 0)\}$. Compute $\prod_{(a,b)\in S} (\omega^a - \zeta^b)$.
- 8. A weak binary representation of a nonnegative integer n is a representation $n = a_0 + 2 \cdot a_1 + 2^2 \cdot a_2 + \ldots$ such that $a_i \in \{0, 1, 2, 3, 4, 5\}$. Determine the number of such representations for 513.