Algebra B

1. Let a, b be positive integers such that $a+b=10$. Let $\frac{p}{q}$ be the difference between the maximum and minimum possible values of $\frac{1}{a}+\frac{1}{b}$, where p and q are relatively prime positive integers. Compute $p+q$.
2. If x is a real number so $3^{x}=27 x$, compute $\log _{3}\left(\frac{3^{3^{x}}}{x^{3}}\right)$.
3. Let x and y be positive real numbers that satisfy $(\log x)^{2}+(\log y)^{2}=\log \left(x^{2}\right)+\log \left(y^{2}\right)$. Compute the maximum possible value of $(\log x y)^{2}$.
4. Let $f(x)=x^{2}+4 x+2$. Let r be the difference between the largest and smallest real solutions of the equation $f(f(f(f(x))))=0$. Then $r=a^{\frac{p}{q}}$ for some positive integers a, p, q so a is square-free and p, q are relatively prime positive integers. Compute $a+p+q$.
5. Let Q be a quadratic polynomial. If the sum of the roots of $Q^{100}(x)$ (where $Q^{i}(x)$ is defined by $Q^{1}(x)=Q(x), Q^{i}(x)=Q\left(Q^{i-1}(x)\right)$ for integers $\left.i \geq 2\right)$ is 8 and the sum of the roots of Q is S, compute $\left|\log _{2}(S)\right|$.
6. Let \mathbb{N}_{0} be the set of non-negative integers. There is a triple (f, a, b), where f is a function from \mathbb{N}_{0} to \mathbb{N}_{0} and $a, b \in \mathbb{N}_{0}$, that satisfies the following conditions:
1) $f(1)=2$
2) $f(a)+f(b) \leq 2 \sqrt{f(a)}$
3) For all $n>0$, we have $f(n)=f(n-1) f(b)+2 n-f(b)$

Find the sum of all possible values of $f(b+100)$.
7. Let $\omega=e^{\frac{2 \pi i}{2017}}$ and $\zeta=e^{\frac{2 \pi i}{2019}}$. Let $S=\{(a, b) \in \mathbb{Z} \mid 0 \leq a \leq 2016,0 \leq b \leq 2018,(a, b) \neq(0,0)\}$. Compute $\prod_{(a, b) \in S}\left(\omega^{a}-\zeta^{b}\right)$.
8. A weak binary representation of a nonnegative integer n is a representation $n=a_{0}+2 \cdot a_{1}+$ $2^{2} \cdot a_{2}+\ldots$ such that $a_{i} \in\{0,1,2,3,4,5\}$. Determine the number of such representations for 513.

