
Algebra B Solutions

1. Let a, b be positive integers such that a+b = 10. Let p
q be the difference between the maximum

and minimum possible values of 1
a + 1

b , where p and q are relatively prime. Compute p+ q.

Answer: 77

Proposed by: Matthew Kendall

Since b = 10 − a, 1
a + 1

b = 1
a + 1

10−a = 10
a(10−a) = 10

−a2+10a . For the maximum, we wish

to minimize the value of the denominator. That is achieved at the axis of symmetry of the
parabola, when a = 5, making 1

a + 1
b = 2

5 . The minimum is achieved when the denominator is
maximized, which is when a is as far from the axis of symmetry as possible: a = 1 or a = 9.
Either value gives 1

a + 1
b = 1

9 + 1
1 = 10

9 .

Hence, the difference of the minimum and maximum is 10
9 −

2
5 = 32

45 , making the answer

32 + 45 = 77 .

2. If x is a real number so 3x = 27x, compute log3( 33
x

x33
).

Answer: 81

Proposed by: Frank Lu

We plug in the condition that we were given initially to get a value of log3( 327x

x27 ). We can

simplify this by using the equality again to get log3( (3x)27

x27 ) = log3( 2727∗x27

x27 ) = log3(2727) =

27 ∗ 3 = 81 .

3. Let x and y be positive real numbers that satisfy (log x)2 + (log y)2 = log(x2) + log(y2).
Compute the maximum possible value of (log xy)2.

Answer: 16

Proposed by: Matthew Kendall

Let u = log x and v = log y. Then u2 + v2 = 2u+ 2v. Completing the square gives (u− 1)2 +
(v − 1)2 = 2, so the equation given is a circle of radius

√
2 centered at (1, 1) on the uv plane.

Let log xy = u+ v = k, so we wish to maximize k2. Note that the line u+ v is tangent to the
circle when the origin is a distance of 0 or 2

√
2 from the line. The latter gives u = v = 2, so

k = 4, making the maximum k2 = 16 .

4. Let f(x) = x2 + 4x+ 2. Let r be the difference between the largest and smallest real solutions

of the equation f(f(f(f(x)))) = 0. Then r = a
p
q for some positive integers a, p, q so a is

square-free and p, q are relatively prime positive integers. Compute a+ p+ q.

Answer: 35

Proposed by: Kevin Feng

Note that f(x) = x2+4x+2 = (x+2)2−2. Then f2(x) = ((x+2)2−2)+2)2−2 = (x+2)4−2.

It is easy to see by induction that fn(x) = (x+ 2)2
n − 2, so f4(x) = (x+ 2)2

4 − 2.

Then the real solutions to f4(x) = 0 are at x + 2 = ± 16
√

2, or x = −2 ± 16
√

2. Hence, the

difference between the two of them are 2 16
√

2 = 2
17
16 , which gives us an answer of 2 + 16 + 17 =

35 .

5. Let Q be a quadratic polynomial. If the sum of the roots of Q100(x) (where Qi(x) is defined
by Q1(x) = Q(x), Qi(x) = Q(Qi−1(x)) for integers i ≥ 2) is 8 and the sum of the roots of Q
is S, compute | log2(S)|.
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Answer: 96

Proposed by: Matthew Kendall

Let the sum of the roots of Qj(x) be Sj for j = 1, . . . , 2019. Our claim is Sj+1 = 2Sj . Let
Q(x) = a(x− r)(x− s), where r and s are the roots of Q. Note that

Qj+1(x) = a(Qj(x)− r)(Qj(x)− s),

so the solutions to Qj+1(x) = 0 are the solutions to Qj(x) = r and Qj(x) = s. Since the
degree of Qj is at least 1, the sum of the roots to Qj(x) = r and Qj(x) = s are both Sj , so
Sj+1 = Sj + Sj = 2Sj .

From our recursion we get S100 = 299S1. Therefore, S1 = 8
299 and | log2(S)| = 96 .

6. Let N0 be the set of non-negative integers. There is a triple (f, a, b), where f is a function
from N0 to N0 and a, b ∈ N0, that satisfies the following conditions:

1) f(1) = 2

2) f(a) + f(b) ≤ 2
√
f(a)

3) For all n > 0, we have f(n) = f(n− 1)f(b) + 2n− f(b)

Find the sum of all possible values of f(b+ 100).

Answer: 10201

Proposed by: Rahul Saha

We’ll focus on condition 2.

By AM-GM (or squaring and rearranging),

2
√
f(a)f(b) ≤ f(a) + f(b) ≤ 2

√
f(a)

which implies f(b) ≤ 1. Since f(b) is as integer we must have f(b) = 0, 1.

Substituting in condition (3) gives us the possibilities f(n) = 2n for n > 0 (for f(b) = 0) and
a recursion which easily amounts to f(n) = n2 + 1.

For the first function, since f(n) = 2n for n > 0 and f(b) = 0, we must necessarily have b = 0.
So f(b+ 100) = f(100) = 200.

In the second case, similarly b = 0 and f(b+ 100) = 1002 + 1 = 10001.

Summing gives us the answer 10201 .

Quick check: In both cases, if we have a = b = 0, condition 2 holds. Condition 1 works for
both functions too. So our functions do satisfy the problem’s statement.

7. Let ω = e
2πi
2017 and ζ = e

2πi
2019 . Let S = {(a, b) ∈ Z | 0 ≤ a ≤ 2016, 0 ≤ b ≤ 2018, (a, b) 6= (0, 0)}.

Compute
∏

(a,b)∈S
(ωa − ζb).

Answer: 4072323

Proposed by: Frank Lu

First, fix a. Note that
2018∏
b=0

(x− ζb) = x2019−1. Hence, if a 6= 0,
2018∏
b=0

(ωa− ζb) = ω2019a−1. For

a = 0, we have that this is
2018∏
b=1

(1−ζb) = 2019, since
2018∏
b=1

(x−ζb) =
2018∏
b=0

(x−ζb)/(x−1) =
2018∑
b=0

xb.

Thus, our product becomes
2016∏
a=1

(ω2019a−1)∗2019. But note that this then becomes 2017∗2019,
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since the ω2019a are just a permutation of the 2017th roots of unity besides 1 (as 2017 and

2019 are relatively prime), which is then just 4072323 .

8. A weak binary representation of a nonnegative integer n is a representation n = a0 + 2 · a1 +
22 · a2 + . . . such that ai ∈ {0, 1, 2, 3, 4, 5}. Determine the number of such representations for
513.

Answer: 3290

Proposed by: Frank Lu

Let N(k) be the number of such representations for k. We know that N(0) = 1, N(1) =
1, N(2) = 2, N(3) = 2, and N(4) = 4. We can see, based on the choice of a0, that N(2k) =
N(2k+1) = N(k)+N(k−1)+N(k−2). To make use of this recurrence relation, we define two
sequences. First, define xk = N(2k). Observe then that x2k − x2k−1 = N(4k)−N(4k − 2) =
N(2k)−N(2k−3) = xk−xk−2, and that x2k+1−x2k = xk−xk−1 by a similar token. Now, let
yk = xk − xk−1. Then, our recurrence relation becomes y2k+1 = yk and that y2k = yk + yk−1.
From our earlier cases before we see that y1 = 1 and y2 = 2. Based on the recurrence in the
odd case, we see that y2k−1 = 1 for each integer i.

Claim:
2k−2∑

i=2k−1−1
yi = 3k−1.

Proof: We inductively show this. For k = 2 we can easily verify this. Now, given the k

case, note that
2k+1−2∑
i=2k−1

yi =
2k−2∑

i=2k−1−1
y2i+1 +

2k−1∑
i=2k−1

y2i. Using our recurrence, this becomes

2k−1∑
i=2k−1−1

yi +
2k−1∑

i=2k−1

yi +
2k−1∑

i=2k−1

yi−1. But knowing that y2k−1 = y2k−1−1 = 1 yields that this

is just 3 ∗
2k−2∑

i=2k−1−1
yi = 3k−1 ∗ 3 = 3k, proving the inductive case and proving the claim.

Finally, observe that N(513) = N(512) = x256 = x0 +
256∑
i=1

yi, which using our claim is just

1 + 3 + 32 + . . . + 37 + y255 + y256. A final observation that y2∗k = k + 1 yields the answer
(38 − 1)/2 + 1 + 9 = 3290 .
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