Algebra B Solutions

1. Let a, b be positive integers such that $a+b=10$. Let $\frac{p}{q}$ be the difference between the maximum and minimum possible values of $\frac{1}{a}+\frac{1}{b}$, where p and q are relatively prime. Compute $p+q$.
Answer: 77

Proposed by: Matthew Kendall

Since $b=10-a, \frac{1}{a}+\frac{1}{b}=\frac{1}{a}+\frac{1}{10-a}=\frac{10}{a(10-a)}=\frac{10}{-a^{2}+10 a}$. For the maximum, we wish to minimize the value of the denominator. That is achieved at the axis of symmetry of the parabola, when $a=5$, making $\frac{1}{a}+\frac{1}{b}=\frac{2}{5}$. The minimum is achieved when the denominator is maximized, which is when a is as far from the axis of symmetry as possible: $a=1$ or $a=9$. Either value gives $\frac{1}{a}+\frac{1}{b}=\frac{1}{9}+\frac{1}{1}=\frac{10}{9}$.
Hence, the difference of the minimum and maximum is $\frac{10}{9}-\frac{2}{5}=\frac{32}{45}$, making the answer $32+45=77$.
2. If x is a real number so $3^{x}=27 x$, compute $\log _{3}\left(\frac{3^{3^{x}}}{x^{3}}\right)$.

Answer: 81
Proposed by: Frank Lu
We plug in the condition that we were given initially to get a value of $\log _{3}\left(\frac{3^{27 x}}{x^{27}}\right)$. We can simplify this by using the equality again to get $\log _{3}\left(\frac{\left(3^{x}\right)^{27}}{x^{27}}\right)=\log _{3}\left(\frac{27^{27} * x^{27}}{x^{27}}\right)=\log _{3}\left(27^{27}\right)=$ $27 * 3=81$.
3. Let x and y be positive real numbers that satisfy $(\log x)^{2}+(\log y)^{2}=\log \left(x^{2}\right)+\log \left(y^{2}\right)$. Compute the maximum possible value of $(\log x y)^{2}$.
Answer: 16
Proposed by: Matthew Kendall
Let $u=\log x$ and $v=\log y$. Then $u^{2}+v^{2}=2 u+2 v$. Completing the square gives $(u-1)^{2}+$ $(v-1)^{2}=2$, so the equation given is a circle of radius $\sqrt{2}$ centered at $(1,1)$ on the $u v$ plane.
Let $\log x y=u+v=k$, so we wish to maximize k^{2}. Note that the line $u+v$ is tangent to the circle when the origin is a distance of 0 or $2 \sqrt{2}$ from the line. The latter gives $u=v=2$, so $k=4$, making the maximum $k^{2}=16$.
4. Let $f(x)=x^{2}+4 x+2$. Let r be the difference between the largest and smallest real solutions of the equation $f(f(f(f(x))))=0$. Then $r=a^{\frac{p}{q}}$ for some positive integers a, p, q so a is square-free and p, q are relatively prime positive integers. Compute $a+p+q$.
Answer: 35
Proposed by: Kevin Feng
Note that $f(x)=x^{2}+4 x+2=(x+2)^{2}-2$. Then $\left.f^{2}(x)=\left((x+2)^{2}-2\right)+2\right)^{2}-2=(x+2)^{4}-2$. It is easy to see by induction that $f^{n}(x)=(x+2)^{2^{n}}-2$, so $f^{4}(x)=(x+2)^{2^{4}}-2$.
Then the real solutions to $f^{4}(x)=0$ are at $x+2= \pm \sqrt[16]{2}$, or $x=-2 \pm \sqrt[16]{2}$. Hence, the difference between the two of them are $2 \sqrt[16]{2}=2^{\frac{17}{16}}$, which gives us an answer of $2+16+17=$ 35.
5. Let Q be a quadratic polynomial. If the sum of the roots of $Q^{100}(x)$ (where $Q^{i}(x)$ is defined by $Q^{1}(x)=Q(x), Q^{i}(x)=Q\left(Q^{i-1}(x)\right)$ for integers $\left.i \geq 2\right)$ is 8 and the sum of the roots of Q is S, compute $\left|\log _{2}(S)\right|$.

Answer: 96

Proposed by: Matthew Kendall

Let the sum of the roots of $Q^{j}(x)$ be S_{j} for $j=1, \ldots, 2019$. Our claim is $S_{j+1}=2 S_{j}$. Let $Q(x)=a(x-r)(x-s)$, where r and s are the roots of Q. Note that

$$
Q^{j+1}(x)=a\left(Q^{j}(x)-r\right)\left(Q^{j}(x)-s\right)
$$

so the solutions to $Q^{j+1}(x)=0$ are the solutions to $Q^{j}(x)=r$ and $Q^{j}(x)=s$. Since the degree of Q^{j} is at least 1 , the sum of the roots to $Q^{j}(x)=r$ and $Q^{j}(x)=s$ are both S_{j}, so $S_{j+1}=S_{j}+S_{j}=2 S_{j}$.
From our recursion we get $S_{100}=2^{99} S_{1}$. Therefore, $S_{1}=\frac{8}{2^{99}}$ and $\left|\log _{2}(S)\right|=96$.
6. Let \mathbb{N}_{0} be the set of non-negative integers. There is a triple (f, a, b), where f is a function from \mathbb{N}_{0} to \mathbb{N}_{0} and $a, b \in \mathbb{N}_{0}$, that satisfies the following conditions:

1) $f(1)=2$
2) $f(a)+f(b) \leq 2 \sqrt{f(a)}$
3) For all $n>0$, we have $f(n)=f(n-1) f(b)+2 n-f(b)$

Find the sum of all possible values of $f(b+100)$.
Answer: 10201
Proposed by: Rahul Saha
We'll focus on condition 2.
By AM-GM (or squaring and rearranging),

$$
2 \sqrt{f(a) f(b)} \leq f(a)+f(b) \leq 2 \sqrt{f(a)}
$$

which implies $f(b) \leq 1$. Since $f(b)$ is as integer we must have $f(b)=0,1$.
Substituting in condition (3) gives us the possibilities $f(n)=2 n$ for $n>0$ (for $f(b)=0$) and a recursion which easily amounts to $f(n)=n^{2}+1$.
For the first function, since $f(n)=2 n$ for $n>0$ and $f(b)=0$, we must necessarily have $b=0$. So $f(b+100)=f(100)=200$.
In the second case, similarly $b=0$ and $f(b+100)=100^{2}+1=10001$.
Summing gives us the answer 10201 .
Quick check: In both cases, if we have $a=b=0$, condition 2 holds. Condition 1 works for both functions too. So our functions do satisfy the problem's statement.
7. Let $\omega=e^{\frac{2 \pi i}{2017}}$ and $\zeta=e^{\frac{2 \pi i}{2019}}$. Let $S=\{(a, b) \in \mathbb{Z} \mid 0 \leq a \leq 2016,0 \leq b \leq 2018,(a, b) \neq(0,0)\}$. Compute $\prod_{(a, b) \in S}\left(\omega^{a}-\zeta^{b}\right)$.

Answer: 4072323
Proposed by: Frank Lu
First, fix a. Note that $\prod_{b=0}^{2018}\left(x-\zeta^{b}\right)=x^{2019}-1$. Hence, if $a \neq 0, \prod_{b=0}^{2018}\left(\omega^{a}-\zeta^{b}\right)=\omega^{2019 a}-1$. For $a=0$, we have that this is $\prod_{b=1}^{2018}\left(1-\zeta^{b}\right)=2019$, since $\prod_{b=1}^{2018}\left(x-\zeta^{b}\right)=\prod_{b=0}^{2018}\left(x-\zeta^{b}\right) /(x-1)=\sum_{b=0}^{2018} x^{b}$.
Thus, our product becomes $\prod_{a=1}^{2016}\left(\omega^{2019 a}-1\right) * 2019$. But note that this then becomes $2017 * 2019$,
since the $\omega^{2019 a}$ are just a permutation of the 2017 th roots of unity besides 1 (as 2017 and 2019 are relatively prime), which is then just 4072323 .
8. A weak binary representation of a nonnegative integer n is a representation $n=a_{0}+2 \cdot a_{1}+$ $2^{2} \cdot a_{2}+\ldots$ such that $a_{i} \in\{0,1,2,3,4,5\}$. Determine the number of such representations for 513.

Answer: 3290
Proposed by: Frank Lu
Let $N(k)$ be the number of such representations for k. We know that $N(0)=1, N(1)=$ $1, N(2)=2, N(3)=2$, and $N(4)=4$. We can see, based on the choice of a_{0}, that $N(2 k)=$ $N(2 k+1)=N(k)+N(k-1)+N(k-2)$. To make use of this recurrence relation, we define two sequences. First, define $x_{k}=N(2 k)$. Observe then that $x_{2 k}-x_{2 k-1}=N(4 k)-N(4 k-2)=$ $N(2 k)-N(2 k-3)=x_{k}-x_{k-2}$, and that $x_{2 k+1}-x_{2 k}=x_{k}-x_{k-1}$ by a similar token. Now, let $y_{k}=x_{k}-x_{k-1}$. Then, our recurrence relation becomes $y_{2 k+1}=y_{k}$ and that $y_{2 k}=y_{k}+y_{k-1}$. From our earlier cases before we see that $y_{1}=1$ and $y_{2}=2$. Based on the recurrence in the odd case, we see that $y_{2^{k}-1}=1$ for each integer i.
Claim: $\sum_{i=2^{k-1}-1}^{2^{k}-2} y_{i}=3^{k-1}$.
Proof: We inductively show this. For $k=2$ we can easily verify this. Now, given the k case, note that $\sum_{i=2^{k}-1}^{2^{k+1}-2} y_{i}=\sum_{i=2^{k-1}-1}^{2^{k}-2} y_{2 i+1}+\sum_{i=2^{k-1}}^{2^{k}-1} y_{2 i}$. Using our recurrence, this becomes $\sum_{i=2^{k-1}-1}^{2^{k}-1} y_{i}+\sum_{i=2^{k-1}}^{2^{k}-1} y_{i}+\sum_{i=2^{k-1}}^{2^{k}-1} y_{i-1}$. But knowing that $y_{2^{k}-1}=y_{2^{k-1}-1}=1$ yields that this is just $3 * \sum_{i=2^{k-1}-1}^{2^{k}-2} y_{i}=3^{k-1} * 3=3^{k}$, proving the inductive case and proving the claim.
Finally, observe that $N(513)=N(512)=x_{256}=x_{0}+\sum_{i=1}^{256} y_{i}$, which using our claim is just $1+3+3^{2}+\ldots+3^{7}+y_{255}+y_{256}$. A final observation that $y_{2 * k}=k+1$ yields the answer $\left(3^{8}-1\right) / 2+1+9=3290$.

