PUM.C

Algebra B Solutions

1. Let a, b be positive integers such that a+b=10. Let $\frac{p}{q}$ be the difference between the maximum and minimum possible values of $\frac{1}{a} + \frac{1}{b}$, where p and q are relatively prime. Compute p+q.

Answer: 77

Proposed by: Matthew Kendall

Since b = 10 - a, $\frac{1}{a} + \frac{1}{b} = \frac{1}{a} + \frac{1}{10-a} = \frac{10}{a(10-a)} = \frac{10}{-a^2+10a}$. For the maximum, we wish to minimize the value of the denominator. That is achieved at the axis of symmetry of the parabola, when a = 5, making $\frac{1}{a} + \frac{1}{b} = \frac{2}{5}$. The minimum is achieved when the denominator is maximized, which is when a is as far from the axis of symmetry as possible: a = 1 or a = 9. Either value gives $\frac{1}{a} + \frac{1}{b} = \frac{1}{9} + \frac{1}{1} = \frac{10}{9}$.

Hence, the difference of the minimum and maximum is $\frac{10}{9} - \frac{2}{5} = \frac{32}{45}$, making the answer $32 + 45 = \boxed{77}$.

2. If x is a real number so $3^x = 27x$, compute $\log_3(\frac{3^{3^x}}{x^{3^3}})$.

Answer: 81

Proposed by: Frank Lu

We plug in the condition that we were given initially to get a value of $\log_3(\frac{3^{27}x}{x^{27}})$. We can simplify this by using the equality again to get $\log_3(\frac{(3^x)^{27}}{x^{27}}) = \log_3(\frac{27^{27} * x^{27}}{x^{27}}) = \log_3(27^{27}) = 27 * 3 = \boxed{81}$.

3. Let x and y be positive real numbers that satisfy $(\log x)^2 + (\log y)^2 = \log(x^2) + \log(y^2)$. Compute the maximum possible value of $(\log xy)^2$.

Answer: 16

Proposed by: Matthew Kendall

Let $u = \log x$ and $v = \log y$. Then $u^2 + v^2 = 2u + 2v$. Completing the square gives $(u - 1)^2 + (v - 1)^2 = 2$, so the equation given is a circle of radius $\sqrt{2}$ centered at (1, 1) on the uv plane. Let $\log xy = u + v = k$, so we wish to maximize k^2 . Note that the line u + v is tangent to the circle when the origin is a distance of 0 or $2\sqrt{2}$ from the line. The latter gives u = v = 2, so k = 4, making the maximum $k^2 = \boxed{16}$.

4. Let $f(x) = x^2 + 4x + 2$. Let r be the difference between the largest and smallest real solutions of the equation f(f(f(f(x)))) = 0. Then $r = a^{\frac{p}{q}}$ for some positive integers a, p, q so a is square-free and p, q are relatively prime positive integers. Compute a + p + q.

Answer: 35

Proposed by: Kevin Feng

Note that $f(x) = x^2 + 4x + 2 = (x+2)^2 - 2$. Then $f^2(x) = ((x+2)^2 - 2) + 2)^2 - 2 = (x+2)^4 - 2$. It is easy to see by induction that $f^n(x) = (x+2)^{2^n} - 2$, so $f^4(x) = (x+2)^{2^4} - 2$.

Then the real solutions to $f^4(x) = 0$ are at $x + 2 = \pm \sqrt[16]{2}$, or $x = -2 \pm \sqrt[16]{2}$. Hence, the difference between the two of them are $2\sqrt[16]{2} = 2^{\frac{17}{16}}$, which gives us an answer of 2 + 16 + 17 = 35.

5. Let Q be a quadratic polynomial. If the sum of the roots of $Q^{100}(x)$ (where $Q^i(x)$ is defined by $Q^1(x) = Q(x), Q^i(x) = Q(Q^{i-1}(x))$ for integers $i \ge 2$) is 8 and the sum of the roots of Q is S, compute $|\log_2(S)|$.

Answer: 96

Proposed by: Matthew Kendall

Let the sum of the roots of $Q^j(x)$ be S_j for j = 1, ..., 2019. Our claim is $S_{j+1} = 2S_j$. Let Q(x) = a(x-r)(x-s), where r and s are the roots of Q. Note that

$$Q^{j+1}(x) = a(Q^j(x) - r)(Q^j(x) - s),$$

so the solutions to $Q^{j+1}(x) = 0$ are the solutions to $Q^j(x) = r$ and $Q^j(x) = s$. Since the degree of Q^j is at least 1, the sum of the roots to $Q^j(x) = r$ and $Q^j(x) = s$ are both S_j , so $S_{j+1} = S_j + S_j = 2S_j$.

From our recursion we get $S_{100} = 2^{99}S_1$. Therefore, $S_1 = \frac{8}{2^{99}}$ and $|\log_2(S)| = 96$.

6. Let \mathbb{N}_0 be the set of non-negative integers. There is a triple (f, a, b), where f is a function from \mathbb{N}_0 to \mathbb{N}_0 and $a, b \in \mathbb{N}_0$, that satisfies the following conditions:

1)
$$f(1) = 2$$

- 2) $f(a) + f(b) \le 2\sqrt{f(a)}$
- 3) For all n > 0, we have f(n) = f(n-1)f(b) + 2n f(b)
- Find the sum of all possible values of f(b + 100).

Answer: | 10201 |

Proposed by: Rahul Saha

We'll focus on condition 2.

By AM-GM (or squaring and rearranging),

$$2\sqrt{f(a)f(b)} \le f(a) + f(b) \le 2\sqrt{f(a)}$$

which implies $f(b) \leq 1$. Since f(b) is as integer we must have f(b) = 0, 1.

Substituting in condition (3) gives us the possibilities f(n) = 2n for n > 0 (for f(b) = 0) and a recursion which easily amounts to $f(n) = n^2 + 1$.

For the first function, since f(n) = 2n for n > 0 and f(b) = 0, we must necessarily have b = 0. So f(b + 100) = f(100) = 200.

In the second case, similarly b = 0 and $f(b + 100) = 100^2 + 1 = 10001$.

Summing gives us the answer 10201.

Quick check: In both cases, if we have a = b = 0, condition 2 holds. Condition 1 works for both functions too. So our functions do satisfy the problem's statement.

7. Let $\omega = e^{\frac{2\pi i}{2017}}$ and $\zeta = e^{\frac{2\pi i}{2019}}$. Let $S = \{(a, b) \in \mathbb{Z} \mid 0 \le a \le 2016, 0 \le b \le 2018, (a, b) \ne (0, 0)\}$. Compute $\prod_{(a,b)\in S} (\omega^a - \zeta^b)$.

Answer: 4072323

Proposed by: Frank Lu

First, fix a. Note that $\prod_{b=0}^{2018} (x - \zeta^b) = x^{2019} - 1$. Hence, if $a \neq 0$, $\prod_{b=0}^{2018} (\omega^a - \zeta^b) = \omega^{2019a} - 1$. For a = 0, we have that this is $\prod_{b=1}^{2018} (1 - \zeta^b) = 2019$, since $\prod_{b=1}^{2018} (x - \zeta^b) = \prod_{b=0}^{2018} (x - \zeta^b)/(x - 1) = \sum_{b=0}^{2018} x^b$. Thus, our product becomes $\prod_{a=1}^{2016} (\omega^{2019a} - 1) * 2019$. But note that this then becomes 2017 * 2019,

since the ω^{2019a} are just a permutation of the 2017th roots of unity besides 1 (as 2017 and 2019 are relatively prime), which is then just 4072323.

8. A weak binary representation of a nonnegative integer n is a representation $n = a_0 + 2 \cdot a_1 + 2^2 \cdot a_2 + \ldots$ such that $a_i \in \{0, 1, 2, 3, 4, 5\}$. Determine the number of such representations for 513.

Answer: 3290

Proposed by: Frank Lu

Let N(k) be the number of such representations for k. We know that N(0) = 1, N(1) = 1, N(2) = 2, N(3) = 2, and N(4) = 4. We can see, based on the choice of a_0 , that N(2k) = N(2k+1) = N(k) + N(k-1) + N(k-2). To make use of this recurrence relation, we define two sequences. First, define $x_k = N(2k)$. Observe then that $x_{2k} - x_{2k-1} = N(4k) - N(4k-2) = N(2k) - N(2k-3) = x_k - x_{k-2}$, and that $x_{2k+1} - x_{2k} = x_k - x_{k-1}$ by a similar token. Now, let $y_k = x_k - x_{k-1}$. Then, our recurrence relation becomes $y_{2k+1} = y_k$ and that $y_{2k} = y_k + y_{k-1}$. From our earlier cases before we see that $y_1 = 1$ and $y_2 = 2$. Based on the recurrence in the odd case, we see that $y_{2^k-1} = 1$ for each integer i.

Claim:
$$\sum_{i=2^{k-1}-1}^{2^k-2} y_i = 3^{k-1}.$$

Proof: We inductively show this. For k = 2 we can easily verify this. Now, given the k case, note that $\sum_{i=2^{k}-1}^{2^{k}-1} y_i = \sum_{i=2^{k-1}-1}^{2^{k}-2} y_{2i+1} + \sum_{i=2^{k-1}}^{2^{k}-1} y_{2i}$. Using our recurrence, this becomes

 $\sum_{i=2^{k-1}-1}^{2^{k}-1} y_{i} + \sum_{\substack{i=2^{k-1}\\2^{k}-2}}^{2^{k}-1} y_{i} + \sum_{\substack{i=2^{k-1}\\2^{k}-2}}^{2^{k}-1} y_{i-1}.$ But knowing that $y_{2^{k}-1} = y_{2^{k-1}-1} = 1$ yields that this

is just $3 * \sum_{i=2^{k-1}-1}^{2^k-2} y_i = 3^{k-1} * 3 = 3^k$, proving the inductive case and proving the claim.

Finally, observe that $N(513) = N(512) = x_{256} = x_0 + \sum_{i=1}^{256} y_i$, which using our claim is just $1 + 3 + 3^2 + \ldots + 3^7 + y_{255} + y_{256}$. A final observation that $y_{2*k} = k + 1$ yields the answer $(3^8 - 1)/2 + 1 + 9 = \boxed{3290}$.