Geometry B Solutions

1. Suppose we have a convex quadrilateral $A B C D$ such that $\angle B=110^{\circ}$ and the circumcircle of $\triangle A B C$ has a center at D. Find the measure, in degrees, of $\angle D$.

Note: The circumcircle of a $\triangle A B C$ is the unique circle containing A, B and C.
Proposed by Zachary Stier.
Answer: 140
Solution: Draw any point E on the circle, connect it to A and C; then $A B C E$ is cyclic, so $\angle E=70^{\circ}$ and since the angles at D and E subtend the same arc, $\angle D=2 \cdot \angle E$.
2. A right cone in $x y z$-space has its apex at $(0,0,0)$, and the endpoints of a diameter on its base are $(12,13,-9)$ and $(12,-5,15)$. The volume of the cone can be expressed as $a \pi$. What is a ?
Proposed by Nathan Bergman and Jacob Wachsprass.
Answer: 975
Solution: The center of the base is the midpoint of the diameter $(12,4,3)$. Then the height of the cone is 13 and the radius of the cone is 15 , so the volume is 975π.
3. Let $\triangle A B C$ be a triangle with circumcenter O and orthocenter H. Let D be a point on the circumcircle of $A B C$ such that $A D \perp B C$. Suppose that $A B=6, D B=2$, and the ratio $\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle H B C)}=5$. Then, if $O A$ is the length of the circumradius, then $O A^{2}$ can be written in the form $\frac{m}{n}$, where m, n are relatively prime nonnegative integers. Compute $m+n$.
Note: The circumradius is the radius of the circumcircle.
Proposed by Oliver Thakar.
Answer: 29
Solution: The key observation here is that $\triangle B D C$ and $\Delta B H C$ are in fact congruent. Then, $\frac{A B \times A C}{H B \times H C}=\frac{A B \times A C}{D B \times D C}=5$.
Because $A B C D$ is an orthogonal cyclic quadrilateral, we get the following relations: $A B^{2}+$ $D C^{2}=4 O A^{2}$ and $A C^{2}+D B^{2}=4 O A^{2}$ In combination with $A B \times A C=5 D B \times D C$, we can solve for $O A$. We know that $\frac{3}{5} A C=D C$. Thus, $A B^{2}+D C^{2}=A C^{2}+D B^{2}$ reduces to $32+\frac{9}{25} A C^{2}=A C^{2}$, so that $A C^{2}=50$. That makes $4 O A^{2}=50+4$, so $O A^{2}=\frac{27}{2}$, or $O A=3 \sqrt{\frac{3}{2}}$.
4. Suppose we choose two real numbers $x, y \in[0,1]$ uniformly at random. Let p be the probability that the circle with center (x, y) and radius $|x-y|$ lies entirely within the unit square $[0,1] \times$ $[0,1]$. Then p can be written in the form $\frac{m}{n}$, where m and n are relatively prime nonnegative integers. Compute $m^{2}+n^{2}$.

Proposed by Sam Mathers.
Answer: 10
Solution: The key observation here is that $\triangle B D C$ and $\Delta B H C$ are in fact congruent. Then, $\frac{A B \times A C}{H B \times H C}=\frac{A B \times A C}{D B \times D C}=5$.
First, suppose $x>y$, then we have the conditions $x-y<y$ and $x-y<1-x$. The point of intersection of these two inequalities is when $x=2 y$ and $y=2 x-1$ so $x=\frac{2}{3}$ and $y=\frac{1}{3}$. Thus, the acceptable region for (x, y) is within the triangle with vertices $(0,0),\left(\frac{2}{3}, \frac{1}{3}\right)$, and $(1,1)$. This has area $\frac{1}{6}$. Multiplying this by two since we also have the case $y>x$, we get an area of $\frac{1}{3}$ so the answer is 10 .

P U M \therefore C

5. Let $B C=6, B X=3, C X=5$, and let F be the midpoint of $B C$. Let $A X \perp B C$ and $A F=\sqrt{247}$. If $A C$ is of the form \sqrt{b} and $A B$ is of the form \sqrt{c} where b and c are nonnegative integers, find $2 c+3 b$.

Proposed by Alan Chung. Solution by Aleksa Milojević.
Answer: 1288
Solution: Consider the circles C_{1} with center B and radius $B X=3$ and C_{2} with center C and radius $C X=5$. Their radical axis is a line through X perpendicular to $B C$, i.e. the line $A X$. As A is on this radical axis, we get that its power w.r.t. circles C_{1} and C_{2} is the same: $A B^{2}-B X^{2}=A C^{2}-C X^{2}$.
On the other hand, by the median formula in triangle $A B C$ we have that $A F^{2}=\frac{1}{2} B A^{2}+$ $\frac{1}{2} C A^{2}-\frac{1}{4} B C^{2}$. The two equations we have got are enough to find $A B^{2}$ and $A C^{2}$. Namely:

$$
\begin{gathered}
A B^{2}+A C^{2}=2\left(A F^{2}+\frac{1}{4} B C^{2}\right)=2 \cdot 256=512 \\
A B^{2}-A C^{2}=B X^{2}-C X^{2}=-16
\end{gathered}
$$

By solving this system we get $A B^{2}=c=248$ and $A C^{2}=b=264$. Therefore, $2 c+3 b=1288$.
6. Let Γ be a circle with center A, radius 1 and diameter $B X$. Let Ω be a circle with center C, radius 1 and diameter $D Y$, where X and Y are on the same side of $A C$. Γ meets Ω at two points, one of which is Z. The lines tangent to Γ and Ω that pass through Z cut out a sector of the plane containing no part of either circle and with angle 60°. If $\angle X Y C=\angle C A B$ and $\angle X C D=90^{\circ}$, then the length of $X Y$ can be written in the form $\frac{\sqrt{a}+\sqrt{b}}{c}$ for integers a, b, c where $\operatorname{gcd}(a, b, c)=1$. Find $a+b+c$.

Proposed by Zachary Stier.
Answer: 16
Solution: Let the circles have radii a, c and let the angle at Z be θ. We first compute $A C$. $\angle A Z C=\theta+2\left(90^{\circ}-\theta\right)=180^{\circ}-\theta$ so the Law of Cosines gives $b=A C=\sqrt{a^{2}+c^{2}+2 a b \cos \theta}$.
The given angle conditions make $A X Y C$ cyclic, and the right angle makes $X Y$ the diameter (of length d) of the circumcircle. Using Ptolemy and Pythagoras, we get the equation $d^{3}-d\left(a^{2}+\right.$ $\left.b^{2}+c^{2}\right)-2 a b c=0$; plugging in: $d^{3}-5 d-2 \sqrt{3}=0$. Taking $d=d \sqrt{3}$ gives $3 d^{3}-5 d-2=0$ which has root -1 , so the original has root $-\sqrt{3}$; factoring gives the only positive value, $d=\frac{\sqrt{3}+\sqrt{11}}{2}$ for a final answer 16 .
7. Let two ants stand on the perimeter of a regular 2019-gon of unit side length. One of them stands on a vertex and the other one is on the midpoint of the opposite side. They start walking along the perimeter at the same speed counterclockwise. The locus of their midpoints traces out a figure P in the plane with N corners. Let the area enclosed by convex hull of P be $\frac{A}{B} \frac{\sin ^{m}\left(\frac{\pi}{4038}\right)}{\tan \left(\frac{\pi}{2019}\right)}$, where A and B are coprime positive integers, and m is the smallest possible positive integer such that this formula holds. Find $A+B+m+N$.
Proposed by Jackson Danger Blitz.
Answer: 6065 .
Solution: The area of regular a n-gon with circumradius R is $n R^{2} \sin \left(\frac{\pi}{n}\right) \cos \left(\frac{\pi}{n}\right)$. The circumradius of the starting n-gon is $R_{0}=\frac{1}{2 \sin \left(\frac{\pi}{n}\right)}$.
The locus consists of a 2019-star, which has 2019 isosceles triangles affixed to a smaller 2019gon, for 4038 total corners.

The convex hull of this star is a 2019-gon. We can find it's circumradius by noting that its vertices are precisely the points which are midpoints of a segment connecting a vertex of the 2019-gon and the midpoint of the opposite side.
Then a simple calculation gives that $R=\frac{R_{0}\left(1-\cos \left(\frac{\pi}{2019}\right)\right)}{2}$. Plugging this into the formula we get that the area of the convex hull is $\frac{2019}{4} \frac{\sin ^{4}\left(\frac{\pi}{4038}\right)}{\tan \left(\frac{\pi}{2019}\right)}$. Furthermore, $\sin \left(\frac{\pi}{4038}\right)$ is not rational when taken to the powers $1,2,3$. Hence the $A=2019, B=4, m=4, N=4038$, for a final answer of 6065 .
Note: We also accepted the interpretation of a corner to not include the self-intersections. This gives us that $N=2019$. Following the above logic yields the answer of 4046 , which we also accepted.
8. Let $A B C D$ be a trapezoid such that $A B \| C D$ and let $P=A C \cap B D, A B=21, C D=7$, $A D=13,[A B C D]=168$. Let the line parallel to $A B$ trough P intersect circumcircle of $B C P$ in X. Circumcircles of $B C P$ and $A P D$ intersect at P, Y. Let $X Y \cap B C=Z$. If $\angle A D C$ is obtuse, then $B Z=\frac{a}{b}$, where a, b are coprime positive integers. Compute $a+b$.
Proposed by Aleksa Milojević. Solution by Igor Medvedev.
Answer: 17
Solution: The height of the trapezoid is $\frac{168}{14}=12$. By using Pythagoras theorem we find $B C=15$. Now we claim $B Z=C Z$. With this $B Z=\frac{15}{2}$, so the answer would be 17 .
Let M be the point of intersection of circumcircle of $\triangle A P D$ and $X P$ other than P. We have $\angle D Y M=\angle D P M=\angle B P X=\angle B Y X$, and similarly $\angle M Y A=\angle M P A=\angle X P C=$ $\angle X Y C$. Furthermore $\angle A D P=\angle A P Y=\angle P C B+\angle C B P-\angle Y P B=\angle Y C B+\angle C B Y-$ $\angle Y P B=\angle C B Y$. Hence triangles $\triangle Y D A$ and $\Delta Y B C$ are similar. The unique spiral similarity between these two triangles has center Y, call it $\Phi: \Delta Y B C \mapsto \Delta Y D A$.
Let N be the point of intersection of $A D$ and $Y M$. Then $\Phi(Z)=N$, because $\angle B Y Z=$ $\angle B Y X=\angle D Y M=\angle D Y N$. This means that $\frac{Y Z}{Y X}=\frac{Y N}{Y M}$. This implies that $N Z \| M X$. From this we get $\frac{C Z}{Z B}=\frac{D N}{N A}$. On the other hand, $\Phi(Z)=N$, so $\frac{B Z}{Z C}=\frac{D N}{N A}$, hence $\frac{B Z}{Z C}=\frac{C Z}{Z B}$, hence $C Z=B Z$.

