
Individual Finals A

1. Given the graph G and cycle C in it, we can perform the following operation: add another
vertex v to the graph, connect it to all vertices in C and erase all the edges from C. Prove
that we cannot perform the operation indefinitely on a given graph.

Solution: The number of edges stays constant, the graph stays connected, the number of
vertices increases: at some point, we will have |E|+1 = |V |. Then, our graph is a tree without
cycles. The process stops then.

2. Prove that for every positive integer m, every prime p and every positive integer j ≤ pm−1,
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Where I = {i ∈ N|0 < i < pj, p - i}. The second term cancels because all of the terms in both

numerator and denominator are not divisible by p. The first term is precisely
(
pm−1

j

)
.

There’s an even number of terms in the second product whenever j · (p− 1) is even; then we
can pair up the ones which evaluate to (−1)j(p−1) (mod pm). In those cases, we are done,
since (−1)j(p−1) = 1. When j is odd and p = 2, then the binomial coefficients are negatives of
each other mod 2m, but we are still done because both expressions are divisible by 2m−1 (we

can see this because the first term is the product of 2m−1

j and an integer).

Proposed by Alec Leng. Solution by Zhuo Qun Song.

3. Let ABCDEF be a convex hexagon with area S such that AB ‖ DE,BC ‖ EF,CD ‖ FA
holds, and whose all angles are obtuse and opposite sides are not the same length. Prove that
the following inequality holds: AABC + ABCD + ACDE + ADEF + AEFA + AFAB < S, where
AXY Z is the area of triangle XY Z.

Solution: Notice that out of two opposite sides one is always longer than the other one. We can
label each side ”red” or ”blue” based on whether it’s longer or shorter than the opposite side,
respectively. We claim that there are no two adjacent red sides. For the sake of contradiction,
assume the contrary that AB and BC are both red. Exactly one of the sides AF and CD
is red (the two are opposite sides so one is blue and one is red). Without loss of generality
assume that AF is red. Denote F ′ and C ′ the orthogonal projections of F and C to AB.
Similarly, denote F ′′ and C ′′ the orthogonal projections of F and C to DE. Notice that
F ′C ′ = F ′′C ′′ (these four points form a rectangle). ∆AFF ′ ∼ DCC ′′ since the corresponding
sides are parallel, hence AF ′ > DF” and AF > DC. Similarly, BC ′ > EF”, so we have
F ′C ′ = F ′A + AB + BC ′ > F”D + DE + EF” = F”C” = F ′C ′, which is absurd. Hence the
red and blue sides alternate.

Without loss of generality let AB be a blue side. Let k, l,m be lines through A,C,E parallel
to BC,DE,FA respectively. Let k ∩ l = X, l ∩m = Y, ,m ∩ k = Z. Since AZEF and ABCX
are parallelograms we have that AZ = EF < BC = AX, so the point Z is in between A and
X. Similarly, X is in between C, Y and Y is in between E,Z. Then the following holds S =

1



AABCX+ACDEY +AEFAZ+AXY Z > AABCX+ACDEY +AEFAZ = 2(AABC+ACDE+AEFA).
Similarly we can prove that S > 2(ABCD+ADEF +AFAB). Adding up the last two inequalities,
we get that 2S > 2(AABC + ABCD + ACDE + ADEF + AEFA + AFAB), which means that
S > AABC + ABCD + ACDE + ADEF + AEFA + AFAB .
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