## Individual Finals A

1. Given the graph $G$ and cycle $C$ in it, we can perform the following operation: add another vertex $v$ to the graph, connect it to all vertices in $C$ and erase all the edges from $C$. Prove that we cannot perform the operation indefinitely on a given graph.
2. Prove that for every positive integer $m$, every prime $p$ and every positive integer $j \leq p^{m-1}$, $p^{m}$ divides $\binom{p^{m}}{p j}-\binom{p^{m-1}}{j}$.
3. Let $A B C D E F$ be a convex hexagon with area $S$ such that $A B\|D E, B C\| E F, C D \| F A$ holds, and whose all angles are obtuse and opposite sides are not the same length. Prove that the following inequality holds: $A_{A B C}+A_{B C D}+A_{C D E}+A_{D E F}+A_{E F A}+A_{F A B}<S$, where $A_{X Y Z}$ is the area of triangle $X Y Z$.
