P U M ㄷC

Individual Finals B

1. Find all nonnegative integers n and m such that $2^{n}=7^{m}+9$.

Answer: $n=4, m=1$ is the only solution.
Solution: When we look at the equation $(\bmod 3)$ we get that n is even, since $7 \equiv 1(\bmod 3)$. Then $n=2 k$, where k is a nonnegative integer. Then $\left(2^{k}-3\right)\left(2^{k}+3\right)=7^{m}$, so both $2^{k}-3$ and $2^{k}+3$ are powers of 7 . If $k \geq 3$, this is impossible by looking at $(\bmod 8)$ for $2^{k}-3$. Then we check $k=0,1,2$ to get that $k=2$ is a solution. Then $n=4, m=1$ is the only solution

Proposed by Igor Medvedev and Aleksa Milojević.
2. Let $G=(V, E)$ be a connected graph. Show that there exists a subset $F \subseteq E$ such that every vertex in $H=(V, F)$ has odd degree if and only if $|V|$ is even.
Note: A connected graph is a graph such that for any two vertices there is a path from one to the other.

Solution: Suppose first that $|V|$ is even and proceed by induction. Suppose the contrary, that there is no such F. Then take a spanning tree of G. By the assumption, this spanning tree does not have all the vertices with odd degree, so there exists a vertex v with even degree. Now make v the root of the spanning tree. Then one of the subtrees of v has an odd number of vertices, because the total number of vertices is even. Let the vertex in that subtree which is a child of v be u. Then u has an even number of children, call this set V_{1}. Let V_{2} be the set of all the other children of v except u and V_{1}. Then apply the inductive hypothesis to the induced graphs on V_{1} and V_{2}, and suppose we get sets F_{1} and F_{2} of edges. Then the set $F_{1} \cup F_{2} \cup\{u v\}$ satisfies the desired property.
Now if the graph G satisfies this property, then we can apply the usual double counting formula for the subgraph of G with edges F to get that $\sum_{v \in V} d_{F}(v)=2|F|$, where $d_{F}(v)$ denotes the degree of v in the graph on V with edges F. Then each $d_{F}(v)$ is odd by assumption, so $|V|$ is even.

Proposed by Bill Huang. Solution by Aleksa Milojević.
3. Let $M N$ be a chord of a circle, and let S be its midpoint. Now let A, B, C, D be points on that circle such that $A C$ and $B D$ both contain S, and A and B are on the same side of $M N$. Let $d_{A}, d_{B}, d_{C}, d_{D}$ be the distances from A, B, C, D respectively to $M N$. Prove that $\frac{1}{d_{A}}+\frac{1}{d_{D}}=\frac{1}{d_{B}}+\frac{1}{d_{C}}$.
Solution: It's natural to convert the expression into $\frac{1}{d_{A}}-\frac{1}{d_{C}}=\frac{1}{d_{B}}-\frac{1}{d_{D}}$. Now we can see that since B, D can be any chord through S, we need to prove that $\frac{1}{d_{A}}-\frac{1}{d_{C}}=$ constant, where that constant only depends on $M N$ and not on the choice of A. Now let's just compute it. Let O be the center of the circle and let the angle between $A C$ and $M N$ be θ. WLOG let $A S \leq C S$. Let the feet of perpendiculars from A and C to $M N$ be A^{\prime} and C^{\prime}. Now from $\triangle A A^{\prime} S \sim \triangle C C^{\prime} S$ we have $\frac{d_{A}}{A S}=\frac{d_{C}}{C S}$, so now $\frac{1}{d_{A}}-\frac{1}{d_{C}}=\frac{1}{d_{A}}\left(1-\frac{A S}{C S}\right)=\frac{1}{d_{A}} \frac{A S-C S}{C S}$. Let P be a point on $A C$ such that $A S=C P$, now $\frac{1}{d_{A}}-\frac{1}{d_{C}}=\frac{1}{d_{A}} \frac{S P}{C S}$. Now we see that $\angle O S C=90-\theta$, so $S P=2 O S \sin \theta$. Now from the power of the point S, we have $A S \cdot C S=M S \cdot N S$, so since $d_{A}=A S \sin \theta$, we have that $\frac{1}{d_{A}}-\frac{1}{d_{C}}=\frac{1}{A S \sin \theta} \frac{2 O S \sin \theta}{C S}=\frac{2 O S}{M S \cdot N S}$, which doesn't depend on A. So now the result follows.

