PUM.C

Individual Finals B

1. Find all nonnegative integers n and m such that $2^n = 7^m + 9$.

Answer: n = 4, m = 1 is the only solution.

Solution: When we look at the equation $(\mod 3)$ we get that n is even, since $7 \equiv 1 \pmod{3}$. Then n = 2k, where k is a nonnegative integer. Then $(2^k - 3)(2^k + 3) = 7^m$, so both $2^k - 3$ and $2^k + 3$ are powers of 7. If $k \ge 3$, this is impossible by looking at $(\mod 8)$ for $2^k - 3$. Then we check k = 0, 1, 2 to get that k = 2 is a solution. Then n = 4, m = 1 is the only solution

Proposed by Igor Medvedev and Aleksa Milojević.

2. Let G = (V, E) be a connected graph. Show that there exists a subset $F \subseteq E$ such that every vertex in H = (V, F) has odd degree if and only if |V| is even.

Note: A *connected graph* is a graph such that for any two vertices there is a path from one to the other.

Solution: Suppose first that |V| is even and proceed by induction. Suppose the contrary, that there is no such F. Then take a spanning tree of G. By the assumption, this spanning tree does not have all the vertices with odd degree, so there exists a vertex v with even degree. Now make v the root of the spanning tree. Then one of the subtrees of v has an odd number of vertices, because the total number of vertices is even. Let the vertex in that subtree which is a child of v be u. Then u has an even number of children, call this set V_1 . Let V_2 be the set of all the other children of v except u and V_1 . Then apply the inductive hypothesis to the induced graphs on V_1 and V_2 , and suppose we get sets F_1 and F_2 of edges. Then the set $F_1 \cup F_2 \cup \{uv\}$ satisfies the desired property.

Now if the graph G satisfies this property, then we can apply the usual double counting formula for the subgraph of G with edges F to get that $\sum_{v \in V} d_F(v) = 2|F|$, where $d_F(v)$ denotes the degree of v in the graph on V with edges F. Then each $d_F(v)$ is odd by assumption, so |V| is even.

Proposed by Bill Huang. Solution by Aleksa Milojević.

3. Let MN be a chord of a circle, and let S be its midpoint. Now let A, B, C, D be points on that circle such that AC and BD both contain S, and A and B are on the same side of MN. Let d_A, d_B, d_C, d_D be the distances from A, B, C, D respectively to MN. Prove that $\frac{1}{d_A} + \frac{1}{d_D} = \frac{1}{d_B} + \frac{1}{d_C}$.

Solution: It's natural to convert the expression into $\frac{1}{d_A} - \frac{1}{d_C} = \frac{1}{d_B} - \frac{1}{d_D}$. Now we can see that since B, D can be any chord through S, we need to prove that $\frac{1}{d_A} - \frac{1}{d_C} = constant$, where that constant only depends on MN and not on the choice of A. Now let's just compute it. Let O be the center of the circle and let the angle between AC and MN be θ . WLOG let $AS \leq CS$. Let the feet of perpendiculars from A and C to MN be A' and C'. Now from $\triangle AA'S \sim \triangle CC'S$ we have $\frac{d_A}{AS} = \frac{d_C}{CS}$, so now $\frac{1}{d_A} - \frac{1}{d_C} = \frac{1}{d_A}(1 - \frac{AS}{CS}) = \frac{1}{d_A}\frac{AS-CS}{CS}$. Let P be a point on AC such that AS = CP, now $\frac{1}{d_A} - \frac{1}{d_C} = \frac{1}{d_A}\frac{SP}{CS}$. Now we see that $\angle OSC = 90 - \theta$, so $SP = 2OS \sin \theta$. Now from the power of the point S, we have $AS \cdot CS = MS \cdot NS$, so since $d_A = AS \sin \theta$, we have that $\frac{1}{d_A} - \frac{1}{d_C} = \frac{1}{AS \sin \theta}\frac{2OS \sin \theta}{CS} = \frac{2OS}{MS \cdot NS}$, which doesn't depend on A. So now the result follows.

Proposed by Igor Medvedev.