P U M ㄷC

Number Theory A

1. The least common multiple of two positive integers a and b is $2^{5} \times 3^{5}$. How many such ordered pairs (a, b) are there?
2. Let f be a function over the natural numbers so that
(a) $f(1)=1$
(b) If $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$ where p_{1}, \cdots, p_{k} are distinct primes, and $e_{1}, \cdots e_{k}$ are non-negative integers, then $f(n)=(-1)^{e_{1}+. .+e_{k}}$.

Find $\sum_{i=1}^{2019} \sum_{d \mid i} f(d)$.
3. Consider the first set of 38 consecutive positive integers who all have sum of their digits not divisible by 11. Find the smallest integer in this set.
4. For a positive integer n, let $f(n)=\sum_{i=1}^{n}\left\lfloor\log _{2} n\right\rfloor$. Find the largest $n<2018$ such that $n \mid f(n)$.
5. Call a positive integer n compact if for any infinite sequence of distinct primes p_{1}, p_{2}, \ldots there exists a finite subsequence of n primes $p_{x_{1}}, p_{x_{2}}, \ldots p_{x_{n}}$ (where the x_{i} are distinct) such that

$$
p_{x_{1}} p_{x_{2}} \cdots p_{x_{n}} \equiv 1 \quad(\bmod 2019)
$$

Find the sum of all compact numbers less than $2 \cdot 2019$.
6. Let $p, q \leq 200$ be prime numbers such that $\frac{q^{p}-1}{p}$ is a square. Find the sum of $p+q$ over all such pairs.
7. Let $f(x)$ be the nonnegative remainder when x is divided by the prime $p=1297$. Let $g(x)$ be the largest possible value of $f\left(-p_{1}\right)+f\left(-p_{2}\right)+\ldots+f\left(-p_{m}\right)$ over all sets $\left\{p_{1}, \ldots, p_{m}\right\}$ where p_{k} are primes such that for all $1 \leq i<j \leq m$ we have $p \nmid\left(p_{i}^{2}-p_{j}^{2}\right)$, and

$$
p \nmid \sigma\left(\left(p_{1} \times \ldots \times p_{m}\right)^{x-1}\right),
$$

where $\sigma(x)$ is the sum of the (distinct, positive, not necessarily proper) divisors of x. Find

$$
\sum_{k=1}^{(p+1) / 2}(g(p-2 k+3)-g(p+2 k+1)) .
$$

8. The integer 107 is a prime number. Let $p=107$. For an integer a such that $p \nmid a$ let a^{-1} be the unique integer $0 \leq a^{-1} \leq p^{2}-1$ such that $p^{2} \mid a a^{-1}-1$. Find the number of positive integers $b, 1 \leq b \leq \frac{p^{2}-1}{2}$ such that there exists an integer $a, 0 \leq a \leq p^{2}-1$ such that $p^{2} \mid b^{2}-\left(a+a^{-1}\right)$.
