

Number Theory B

- 1. The product of the positive factors of a positive integer n is 8000. What is n?
- 2. The least common multiple of two positive integers a and b is $2^5 \times 3^5$. How many such ordered pairs (a, b) are there?
- 3. Let f be a function over the natural numbers so that
 - (a) f(1) = 1
 - (b) If $n = p_1^{e_1} \dots p_k^{e_k}$ where p_1, \dots, p_k are distinct primes, and $e_1, \dots e_k$ are non-negative integers, then $f(n) = (-1)^{e_1 + \dots + e_k}$.

Find
$$\sum_{i=1}^{2019} \sum_{d|i} f(d)$$

- 4. Let n be the smallest positive integer which can be expressed as a sum of multiple (at least two) consecutive integers in precisely 2019 ways. Then n is the product of k not necessarily distinct primes. Find k.
- 5. Consider the first set of 38 consecutive positive integers who all have sum of their digits not divisible by 11. Find the smallest integer in this set.
- 6. Let f be a polynomial with integer coefficients of degree 2019 such that the following conditions are satisfied:
 - (a) For all integers n, f(n) + f(-n) = 2.
 - (b) $101^2 | f(0) + f(1) + f(2) + \dots + f(100).$

Compute the remainder when f(101) is divided by 101^2 .

- 7. For a positive integer n, let $f(n) = \sum_{i=1}^{n} \lfloor \log_2 i \rfloor$. Find the largest n < 2018 such that $n \mid f(n)$.
- 8. Call a positive integer *n* compact if for any infinite sequence of distinct primes p_1, p_2, \ldots there exists a finite subsequence of *n* primes $p_{x_1}, p_{x_2}, \ldots, p_{x_n}$ (where the x_i are distinct) such that

$$p_{x_1} p_{x_2} \cdots p_{x_n} \equiv 1 \pmod{2019}$$

Find the sum of all *compact* numbers less than $2 \cdot 2019$.