
Number Theory A Solutions

1. The least common multiple of two positive integers a and b is 25×35. How many such ordered
pairs (a, b) are there?

Proposed by: Rahul Saha

Answer: 121

Looking at each prime, there are 11 choices, so the answer is 112.

2. Let f be a function over the natural numbers so that

1. f(1) = 1

2. If n = pe11 ...p
ek
k where p1, · · · , pk are distinct primes, and e1, · · · ek are non-negative integers,

then f(n) = (−1)e1+..+ek .

Find
∑2019

i=1

∑
d|i f(d).

Proposed by: Marko Medvedev

Answer: 44

Since the function is completely multiplicative,
∑

d|i f(d) is given by product of
f(pk)xk+1 − 1

f(pk)− 1
which is 0 if xk is odd and 1 if xk is even (recall that f(p) = −1 for all primes p). Therefore
the required sum evaluates to the number of squares less than 2019, which is 44.

3. Consider the first set of 38 consecutive positive integers who all have sum of their digits not
divisible by 11. Find the smallest integer in this set.

Proposed by: Marko Medvedev

Answer: 999981

Consider first the last two digits. Note that if we don’t go past a multiple of 100, then we will
have a string of at least 12 consecutive sums of digits since we will have a number ending in
zero such that 29 plus that number has sum of digits 11 more than that number. Note that if
we go up to at least 19 mod 100 then we will have 11 consecutive sums, and if we go down to
at most 80 then we will have 11 consecutive sums, so we must have the range from 100x+ 81
to 100x+ 118. Then we must have the sum of digits of 100x+ 100 must have sum 1 mod 11,
so x + 1 has sum of digits 1 mod 11, and 100x + 81 must have sum 1 mod 11 so x has sum
3 mod 11. Thus when we add 1 to x we have to increase digitsum by 9 mod 11. Note that
x must end in some number of nines. If it ends in k nines, then we increase by 1 − 9k Thus
2k + 1 = 9 (mod 11) so k = 4 so the smallest x is 9999 and our answer is 999981.

4. For a positive integer n, let f(n) =
∑n

i=1blog2 ic. Find the largest n < 2018 such that n | f(n).

Proposed by: Eric Neyman

Answer: 1013

First note that

f(2r+1 − 1) =

r∑
k=0

k · 2k =

r∑
i=1

r∑
j=i

2j =

r∑
i=1

(2r+1 − 2i) = (r − 1)2r+1 + 2.

Thus, if we write n = 2r+1 − 1 +m, where 0 ≤ m ≤ 2r+1, we have

f(n) = (r − 1)2r+1 + 2 +m(r + 1).
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Thus, the condition n | f(n) is equivalent (after subtracting (r − 1)n from f(n)) to

2r+1 − 1 +m | 2 +m(r + 1) + r − 1−m(r − 1) = 2m+ r + 1.

Now, the right-hand side is more than zero times the left-hand side but more than twice the
left-hand side, so n | f(n) if and only if 2r+1 − 1 +m = 2m+ r + 1, i.e. m = 2r+1 − r − 2, so
n = 2r+2 − r − 3.

The largest such value that is less than 2018 is 210 − 8− 3 = 1013.

5. Call a positive integer n compact if for any infinite sequence of distinct primes p1, p2, . . . there
exists a finite subsequence of n primes px1

, px2
, . . . pxn

(where the xi are distinct) such that

px1
px2
· · · pxn

≡ 1 (mod 2019)

Find the sum of all compact numbers less than 2 · 2019.

Proposed by: Rahul Saha

Answer: 14112

Claim 1: Let n be a compact number. Then we must have an ≡ 1 (mod 2019) for all
(a, 2019) = 1.

Proof: By Dirichlet’s theorem on arithmetic progressions, we can find infinitely many primes
p ≡ a (mod 2019). Letting our sequence be composed only of these primes, we must have
an ≡ 1 (mod 2019).

Claim 2: If an ≡ 1 (mod 2019) for all (a, 2019) = 1, then n is a compact number.

Proof: Note that by taking all large enough primes in our sequence, we can assume (pi, 2019) =
1. But some residue a mod 2019 must appear infinitely many times, which gives us an ≡ 1
(mod 2019), as desired.

Claim 3: Let n be the minimal compact number. Then all compact numbers are multiples of
n, and conversely any multiple of n is a good number.

Proof: Let N be another compact number, and suppose N = nq + r, but then we have
aN ≡ ar ≡ 1 which would make r the minimal good number, a contradiction unless r = 0.
The other direction is trivial.

Claim 4: The minimal compact number is 672.

Proof: Let x and y be primitive roots modulo 3 and 673. Then the order of xy is 2·672
(2,672) = 672,

so the minimal compact number is at least 672. Note, a672 ≡ 1 (mod 3) and a672 ≡ 1
(mod 673) therefore a672 ≡ 1 (mod 2019) for all (a, 2019) = 1. Therefore the minimal compact
number is 672.

Therefore, the sum is 672 · (1 + 2 + 3 + 4 + 5 + 6) = 672 · 21 = 14112.

6. Let p, q ≤ 200 be prime numbers such that qp−1
p is a square. Find the sum of p + q over all

such pairs.

Proposed by: Marko Medvedev

Answer: 24

We have that p|qp − 1, hence p|q − 1 by Fermat’s small theorem. Now suppose that p is odd.

Then we have that vp(qp − 1) = vp(q − 1) + 1, so we have that p|| q
p−1
q−1 and furthermore that

q− 1 and qp−1
p(q−1) are coprime, and hence squares. Then q− 1 is square, and is divisible by p so

it’s q = (pm)2 + 1 for some integer m. Furthermore since p is odd, q > 2 hence also odd. Then
q is of the form q = (2pm)2+1 for some integer m. Now since we have q ≤ 200 we can check all
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cases directly (there’s three of them), and get that there are no solutions here. Now suppose
that p = 2. Hence q2 = 2x2 + 1. Since 1

2 (q − 1)(q + 1) = x2, and (q − 1, q + 1) = 2, we know
that x is even. If x is divisible by 4 then q ≡ 1 (mod 16), so q ≡ 1 (mod 8). Furthermore
by looking at modulo 32 it’s clear that q ≡ 1 (mod 16). This eases the search a lot and the
only answer here is q = 17 and we can check that his indeed works. Now if x ≡ 2 (mod 4),
then q ≡ 3 (mod 4), since the only odd integers dividing x2 + 1 are of the form 4k + 1. Then
looking at (mod 16) gives q ≡ 3 (mod 16). Again the search is greatly reduced and we get
that the only solution is q = 3. In total the solutions are (p, q) = (2, 3), (2, 17).

7. Let f(x) be the nonnegative remainder when x is divided by the prime p = 1297. Let g(x) be
the largest possible value of f(−p1) + f(−p2) + . . .+ f(−pm) over all sets {p1, . . . , pm} where
pk are primes such that for all 1 ≤ i < j ≤ m we have p - (p2i − p2j ), and

p - σ((p1 × . . .× pm)x−1),

where σ(x) is the sum of the (distinct, positive, not necessarily proper) divisors of x. Find

(p+1)/2∑
k=1

(g(p− 2k + 3)− g(p+ 2k + 1)) .

Proposed by: Michael Gintz

Answer: 2557

By dirichlet’s theorem, we can find a prime with any value mod p. Now note that σ is the
product of (pxk−1)/(pk−1). If pk is 1 mod p, then the value it multiplies is not 0 mod p unless
x is 0 mod p. Thus we have values 1 mod p here except in g(2p). Thus for 2 to p− 1 we can
simply consider whether pxk is 1 mod p, and then take the max of pk and p− pk. Define h as
g but the pk cannot be 1 mod p.

Note for that we can arbitrarily choose some primitive root r, write every number from 2 to
p− 2 as rk, and then to see whether we can include f(r) in g(x) we simply see if (p− 1) - xk.
Then we have that h(x) = h(x+ p− 1) and h(x) = h(p− 1− x), and thus we are looking for

h(2) + . . .+ h(p+ 1)− h(p+ 3)− . . .− h(2p+ 2) + (p− 1)

= 2h(p+ 1)− h(2p)− h(2p+ 2) + (p− 1)

= h(2)− h(4) + (p− 1)

where the (p− 1) comes from the fact that g(2p) cannot include pk ≡ ±1 (mod p). Note that
h(2) can include everything whose square is not 1 mod p, which is everything from (p+ 1)/2
to p− 2. Then note that h(4) contains everything whose 4th power is not 1 mod p. Note that
1296 = 64, so 36 is a 4th root. Thus this is everything from (p+ 1)/2 to p− 2 except p− 36.
Thus h(2)− h(4) = (p− 36) and our answer is 2p− 37 = 2557.

8. The number 107 is a prime number. Let p = 107. For a number a such that p - a let a−1 be the
unique number 0 ≤ a−1 ≤ p2 − 1 such that p2|aa−1 − 1. Find the number of positive integers

b, 1 ≤ b ≤ p2−1
2 such that there exists a number a, 0 ≤ a ≤ p2 − 1 such that p2|b2 − (a+ a−1).

Proposed by: Igor Medvedev

Answer: 2783 (p2−3p+4
4 )

Solutions: We work in (mod p2). First note that for 4 | p−3, −1 is not a quadratic residue mod
p2. Then note that for p - x, x is a quadratic residue (mod p2) iff −x is not a quadratic residue
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(mod p2). Now we will count the number of values that a+a−1 takes in {0, 1, 2, . . . , p2−1} takes
as a ranges over 0, 1, . . . , p2−1. Suppose that for numbers x, y we have that x+x−1 = y+y−1.
This is equivalent to p2 | (xy−1)(x−y). For x = kp+1 the value is 2. Similarly for y = kp−1,
the value is −2, and exactly one of these two is a quadratic residue. For x 6= ±1 (mod p), there
exists exactly one y = x−1, y 6= x such that x + x−1 = y + y−1, since we have to have either
p2 | xy − 1 or p2 | x− y. Now for x 6= ±1 (mod 1), we have that x+ x−1 = −(−x+ (−x)−1),
so exactly one of these is a quadratic residue. Then for each of the p2 − 3p problems which
don’t give −1, 0, 1 (mod p) we pair up x + x−1 with the corresponding y + y−1 and x + x−1

with −(−x+ (−x)−1). Exactly one of these values is counted, so this adds p2−3p
4 . To this we

add one for 2 or −2. The total number is p2−3p+4
4 .
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