Number Theory A Solutions

1. The least common multiple of two positive integers a and b is $2^{5} \times 3^{5}$. How many such ordered pairs (a, b) are there?

Proposed by: Rahul Saha

Answer: 121
Looking at each prime, there are 11 choices, so the answer is 11^{2}.
2. Let f be a function over the natural numbers so that

1. $f(1)=1$
2. If $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$ where p_{1}, \cdots, p_{k} are distinct primes, and $e_{1}, \cdots e_{k}$ are non-negative integers, then $f(n)=(-1)^{e_{1}+. .+e_{k}}$.
Find $\sum_{i=1}^{2019} \sum_{d \mid i} f(d)$.
Proposed by: Marko Medvedev
Answer: 44
Since the function is completely multiplicative, $\sum_{d \mid i} f(d)$ is given by product of $\frac{f\left(p_{k}\right)^{x_{k}+1}-1}{f\left(p_{k}\right)-1}$ which is 0 if x_{k} is odd and 1 if x_{k} is even (recall that $f(p)=-1$ for all primes p). Therefore the required sum evaluates to the number of squares less than 2019, which is 44 .
3. Consider the first set of 38 consecutive positive integers who all have sum of their digits not divisible by 11. Find the smallest integer in this set.

Proposed by: Marko Medvedev

Answer: 999981
Consider first the last two digits. Note that if we don't go past a multiple of 100, then we will have a string of at least 12 consecutive sums of digits since we will have a number ending in zero such that 29 plus that number has sum of digits 11 more than that number. Note that if we go up to at least $19 \bmod 100$ then we will have 11 consecutive sums, and if we go down to at most 80 then we will have 11 consecutive sums, so we must have the range from $100 x+81$ to $100 x+118$. Then we must have the sum of digits of $100 x+100$ must have sum $1 \bmod 11$, so $x+1$ has sum of digits $1 \bmod 11$, and $100 x+81$ must have sum $1 \bmod 11$ so x has sum $3 \bmod 11$. Thus when we add 1 to x we have to increase digitsum by $9 \bmod 11$. Note that x must end in some number of nines. If it ends in k nines, then we increase by $1-9 k$ Thus $2 k+1=9(\bmod 11)$ so $k=4$ so the smallest x is 9999 and our answer is 999981.
4. For a positive integer n, let $f(n)=\sum_{i=1}^{n}\left\lfloor\log _{2} i\right\rfloor$. Find the largest $n<2018$ such that $n \mid f(n)$. Proposed by: Eric Neyman
Answer: 1013
First note that

$$
f\left(2^{r+1}-1\right)=\sum_{k=0}^{r} k \cdot 2^{k}=\sum_{i=1}^{r} \sum_{j=i}^{r} 2^{j}=\sum_{i=1}^{r}\left(2^{r+1}-2^{i}\right)=(r-1) 2^{r+1}+2 .
$$

Thus, if we write $n=2^{r+1}-1+m$, where $0 \leq m \leq 2^{r+1}$, we have

$$
f(n)=(r-1) 2^{r+1}+2+m(r+1)
$$

P U M ㄷC

Thus, the condition $n \mid f(n)$ is equivalent (after subtracting $(r-1) n$ from $f(n))$ to

$$
2^{r+1}-1+m \mid 2+m(r+1)+r-1-m(r-1)=2 m+r+1
$$

Now, the right-hand side is more than zero times the left-hand side but more than twice the left-hand side, so $n \mid f(n)$ if and only if $2^{r+1}-1+m=2 m+r+1$, i.e. $m=2^{r+1}-r-2$, so $n=2^{r+2}-r-3$.
The largest such value that is less than 2018 is $2^{10}-8-3=1013$.
5. Call a positive integer n compact if for any infinite sequence of distinct primes p_{1}, p_{2}, \ldots there exists a finite subsequence of n primes $p_{x_{1}}, p_{x_{2}}, \ldots p_{x_{n}}$ (where the x_{i} are distinct) such that

$$
p_{x_{1}} p_{x_{2}} \cdots p_{x_{n}} \equiv 1 \quad(\bmod 2019)
$$

Find the sum of all compact numbers less than $2 \cdot 2019$.
Proposed by: Rahul Saha
Answer: 14112
Claim 1: Let n be a compact number. Then we must have $a^{n} \equiv 1(\bmod 2019)$ for all $(a, 2019)=1$.
Proof: By Dirichlet's theorem on arithmetic progressions, we can find infinitely many primes $p \equiv a(\bmod 2019)$. Letting our sequence be composed only of these primes, we must have $a^{n} \equiv 1(\bmod 2019)$.
Claim 2: If $a^{n} \equiv 1(\bmod 2019)$ for all $(a, 2019)=1$, then n is a compact number.
Proof: Note that by taking all large enough primes in our sequence, we can assume $\left(p_{i}, 2019\right)=$ 1. But some residue $a \bmod 2019$ must appear infinitely many times, which gives us $a^{n} \equiv 1$ (mod 2019), as desired.
Claim 3: Let n be the minimal compact number. Then all compact numbers are multiples of n, and conversely any multiple of n is a good number.
Proof: Let N be another compact number, and suppose $N=n q+r$, but then we have $a^{N} \equiv a^{r} \equiv 1$ which would make r the minimal good number, a contradiction unless $r=0$. The other direction is trivial.

Claim 4: The minimal compact number is 672.
Proof: Let x and y be primitive roots modulo 3 and 673 . Then the order of $x y$ is $\frac{2 \cdot 672}{(2,672)}=672$, so the minimal compact number is at least 672 . Note, $a^{672} \equiv 1(\bmod 3)$ and $a^{672} \equiv 1$ $(\bmod 673)$ therefore $a^{672} \equiv 1(\bmod 2019)$ for all $(a, 2019)=1$. Therefore the minimal compact number is 672 .
Therefore, the sum is $672 \cdot(1+2+3+4+5+6)=672 \cdot 21=14112$.
6. Let $p, q \leq 200$ be prime numbers such that $\frac{q^{p}-1}{p}$ is a square. Find the sum of $p+q$ over all such pairs.

Proposed by: Marko Medvedev

Answer: 24
We have that $p \mid q^{p}-1$, hence $p \mid q-1$ by Fermat's small theorem. Now suppose that p is odd. Then we have that $v_{p}\left(q^{p}-1\right)=v_{p}(q-1)+1$, so we have that $p \| \frac{q^{p}-1}{q-1}$ and furthermore that $q-1$ and $\frac{q^{p}-1}{p(q-1)}$ are coprime, and hence squares. Then $q-1$ is square, and is divisible by p so it's $q=(p m)^{2}+1$ for some integer m. Furthermore since p is odd, $q>2$ hence also odd. Then q is of the form $q=(2 p m)^{2}+1$ for some integer m. Now since we have $q \leq 200$ we can check all

P U M ㄷC

cases directly (there's three of them), and get that there are no solutions here. Now suppose that $p=2$. Hence $q^{2}=2 x^{2}+1$. Since $\frac{1}{2}(q-1)(q+1)=x^{2}$, and $(q-1, q+1)=2$, we know that x is even. If x is divisible by 4 then $q \equiv 1(\bmod 16)$, so $q \equiv 1(\bmod 8)$. Furthermore by looking at modulo 32 it's clear that $q \equiv 1(\bmod 16)$. This eases the search a lot and the only answer here is $q=17$ and we can check that his indeed works. Now if $x \equiv 2(\bmod 4)$, then $q \equiv 3(\bmod 4)$, since the only odd integers dividing $x^{2}+1$ are of the form $4 k+1$. Then looking at $(\bmod 16)$ gives $q \equiv 3(\bmod 16)$. Again the search is greatly reduced and we get that the only solution is $q=3$. In total the solutions are $(p, q)=(2,3),(2,17)$.
7. Let $f(x)$ be the nonnegative remainder when x is divided by the prime $p=1297$. Let $g(x)$ be the largest possible value of $f\left(-p_{1}\right)+f\left(-p_{2}\right)+\ldots+f\left(-p_{m}\right)$ over all sets $\left\{p_{1}, \ldots, p_{m}\right\}$ where p_{k} are primes such that for all $1 \leq i<j \leq m$ we have $p \nmid\left(p_{i}^{2}-p_{j}^{2}\right)$, and

$$
p \nmid \sigma\left(\left(p_{1} \times \ldots \times p_{m}\right)^{x-1}\right),
$$

where $\sigma(x)$ is the sum of the (distinct, positive, not necessarily proper) divisors of x. Find

$$
\sum_{k=1}^{(p+1) / 2}(g(p-2 k+3)-g(p+2 k+1)) .
$$

Proposed by: Michael Gintz

Answer: 2557
By dirichlet's theorem, we can find a prime with any value mod p. Now note that σ is the product of $\left(p_{k}^{x}-1\right) /\left(p_{k}-1\right)$. If p_{k} is $1 \bmod p$, then the value it multiplies is not $0 \bmod p$ unless x is $0 \bmod \mathrm{p}$. Thus we have values $1 \bmod p$ here except in $g(2 p)$. Thus for 2 to $p-1$ we can simply consider whether p_{k}^{x} is $1 \bmod \mathrm{p}$, and then take the \max of p_{k} and $p-p_{k}$. Define h as g but the p_{k} cannot be $1 \bmod \mathrm{p}$.
Note for that we can arbitrarily choose some primitive root r, write every number from 2 to $p-2$ as r^{k}, and then to see whether we can include $f(r)$ in $g(x)$ we simply see if $(p-1) \nmid x k$. Then we have that $h(x)=h(x+p-1)$ and $h(x)=h(p-1-x)$, and thus we are looking for

$$
\begin{gathered}
h(2)+\ldots+h(p+1)-h(p+3)-\ldots-h(2 p+2)+(p-1) \\
=2 h(p+1)-h(2 p)-h(2 p+2)+(p-1) \\
=h(2)-h(4)+(p-1)
\end{gathered}
$$

where the $(p-1)$ comes from the fact that $g(2 p)$ cannot include $p_{k} \equiv \pm 1(\bmod p)$. Note that $h(2)$ can include everything whose square is not $1 \bmod \mathrm{p}$, which is everything from $(p+1) / 2$ to $p-2$. Then note that $h(4)$ contains everything whose 4 th power is not $1 \bmod \mathrm{p}$. Note that $1296=6^{4}$, so 36 is a 4 th root. Thus this is everything from $(p+1) / 2$ to $p-2$ except $p-36$. Thus $h(2)-h(4)=(p-36)$ and our answer is $2 p-37=2557$.
8. The number 107 is a prime number. Let $p=107$. For a number a such that $p \nmid a$ let a^{-1} be the unique number $0 \leq a^{-1} \leq p^{2}-1$ such that $p^{2} \mid a a^{-1}-1$. Find the number of positive integers $b, 1 \leq b \leq \frac{p^{2}-1}{2}$ such that there exists a number $a, 0 \leq a \leq p^{2}-1$ such that $p^{2} \mid b^{2}-\left(a+a^{-1}\right)$.

Proposed by: Igor Medvedev

Answer: $2783\left(\frac{p^{2}-3 p+4}{4}\right)$
Solutions: We work in $\left(\bmod p^{2}\right)$. First note that for $4 \mid p-3,-1$ is not a quadratic residue mod p^{2}. Then note that for $p \nmid x, x$ is a quadratic residue $\left(\bmod p^{2}\right)$ iff $-x$ is not a quadratic residue
$\left(\bmod p^{2}\right)$. Now we will count the number of values that $a+a^{-1}$ takes in $\left\{0,1,2, \ldots, p^{2}-1\right\}$ takes as a ranges over $0,1, \ldots, p^{2}-1$. Suppose that for numbers x, y we have that $x+x^{-1}=y+y^{-1}$. This is equivalent to $p^{2} \mid(x y-1)(x-y)$. For $x=k p+1$ the value is 2 . Similarly for $y=k p-1$, the value is -2 , and exactly one of these two is a quadratic residue. For $x \neq \pm 1(\bmod p)$, there exists exactly one $y=x^{-1}, y \neq x$ such that $x+x^{-1}=y+y^{-1}$, since we have to have either $p^{2} \mid x y-1$ or $p^{2} \mid x-y$. Now for $x \neq \pm 1(\bmod 1)$, we have that $x+x^{-1}=-\left(-x+(-x)^{-1}\right)$, so exactly one of these is a quadratic residue. Then for each of the $p^{2}-3 p$ problems which don't give $-1,0,1(\bmod p)$ we pair up $x+x^{-1}$ with the corresponding $y+y^{-1}$ and $x+x^{-1}$ with $-\left(-x+(-x)^{-1}\right)$. Exactly one of these values is counted, so this adds $\frac{p^{2}-3 p}{4}$. To this we add one for 2 or -2 . The total number is $\frac{p^{2}-3 p+4}{4}$.

