Number Theory B Solutions

1. The product of the positive factors of a positive integer n is 8000 . What is n ?

Proposed by: Jacob Wachspress, Nathan Bergman
Answer: 20
20 has 6 factors, 3 pairs, this is $20^{3}=8000$.
2. The least common multiple of two positive integers a and b is $2^{5} \times 3^{5}$. How many such ordered pairs (a, b) are there?

Proposed by: Rahul Saha
Answer: 121
Looking at each prime, there are 11 choices, so the answer is 11^{2}.
3. Let f be a function over the natural numbers so that

1. $f(1)=1$
2. If $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$ where p_{1}, \cdots, p_{k} are distinct primes, and $e_{1}, \cdots e_{k}$ are non-negative integers, then $f(n)=(-1)^{e_{1}+. .+e_{k}}$.
Find $\sum_{i=1}^{2019} \sum_{d \mid i} f(d)$.
Proposed by: Marko Medvedev
Answer: 44
Since the function is completely multiplicative, $\sum_{d \mid i} f(d)$ is given by product of $\frac{f\left(p_{k}\right)^{x_{k}+1}-1}{f\left(p_{k}\right)-1}$ which is 0 if x_{k} is odd and 1 if x_{k} is even (recall that $f(p)=-1$ for all primes p). Therefore the required sum evaluates to the number of squares less than 2019, which is 44 .
3. Let n be the smallest positive integer which can be expressed as a sum of multiple (at least two) consecutive integers in precisely 2019 ways. Then n is the product of k not necessarily distinct primes. Find k.

Proposed by: Oliver Thakar

Answer: 105
n can be written as a sum of $2 k+1$ consecutive integers if and only if $2 k+1$ is a divisor of n, for letting x be the integer in the center of the sum, then $n=(x-k)+\ldots+x+\ldots+(x+k)=$ $(2 k+1) x$. Hence, the number of odd divisors of n minus one (1 is an odd divisor of n but does not correspond to a sum of at least two consecutive integers) equals the number of ways that n can be written as a sum of an odd number of consecutive integers.
There is a bijection between each writing of n as a sum of consecutive even integers and the odd divisors of n.

Letting $2 k$ be an even integer, and x being the center of the sum (so that x is some integer plus $\frac{1}{2}$,) then:

$$
n=\left(x-\frac{1}{2}-k\right)+\ldots+\left(x-\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\ldots+\left(x+\frac{1}{2}+k\right)=k x .
$$

Thus, we know that the factor of 2 in k must be one more than the factor of 2 in n, and that $2 k$ divides n. For each odd divisor of n, there is one such k which is a power of 2 times that divisor, and vice versa.

P U M ㄷC

Thus, the total number of ways to write n as the sum of multiple consecutive integers is 2 times the number of odd divisors minus 1.

The number of odd divisors of n must be 1010, then, which factors into $1010=2 * 5 * 101$.
Now, there are three prime factors of 1010 , so there can be up to 3 odd prime factors of n. (And, the smallest n will have no even prime factors.)
If there is only one prime factor, then $n=3^{1009}$, for n must be the smallest.
If there are two prime factors, then there are three possibilities: $n=p^{100} q^{9}$ or $n=p^{201} q^{4}$ or $n=p^{504} q$. Clearly, in all three cases, the smallest n results in $p=3$ and $q=5$. Of all three cases, the smallest is $n=3^{100} 5^{9}$, for $3^{1} 01>3^{8}>5^{5}$. Similarly, $n=3^{100} 5^{9}$ is smaller than $n=3^{1009}$, for $3^{909}>3^{14}>5^{9}$.
Now, suppose there are three prime factors. Here, $n=3^{100} \cdot 5^{4} \cdot 7$. Since $5^{4} \cdot 7<5^{9}$, then this solution is the smallest possible.
Thus, the answer is $n=3^{100} \cdot 5^{4} \cdot 7$.
5. Consider the first set of 38 consecutive positive integers who all have sum of their digits not divisible by 11. Find the smallest integer in this set.
Proposed by: Marko Medvedev
Answer: 999981
Consider first the last two digits. Note that if we don't go past a multiple of 100, then we will have a string of at least 12 consecutive sums of digits since we will have a number ending in zero such that 29 plus that number has sum of digits 11 more than that number. Note that if we go up to at least $19 \bmod 100$ then we will have 11 consecutive sums, and if we go down to at most 80 then we will have 11 consecutive sums, so we must have the range from $100 x+81$ to $100 x+118$. Then we must have the sum of digits of $100 x+100$ must have sum $1 \bmod 11$, so $x+1$ has sum of digits $1 \bmod 11$, and $100 x+81$ must have sum $1 \bmod 11$ so x has sum $3 \bmod 11$. Thus when we add 1 to x we have to increase digitsum by $9 \bmod 11$. Note that x must end in some number of nines. If it ends in k nines, then we increase by $1-9 k$ Thus $2 k+1=9(\bmod 11)$ so $k=4$ so the smallest x is 9999 and our answer is 999981 .
6. Let f be a polynomial with integer coefficients of degree 2019 such that the following conditions are satisfied:

1. For all integers $n, f(n)+f(-n)=2$.
2. $101^{2} \mid f(0)+f(1)+f(2)+\cdots+f(100)$. Compute the remainder when $f(101)$ is divided by 101^{2}.

Proposed by: Matthew Kendall
Answer: 203
We use this fact: For nonnegative integer k and prime $p>2$,

$$
p^{2} \mid 1^{2 k+1}+2^{2 k+1}+\cdots+(p-1)^{2 k+1} .
$$

This comes from $j^{2 k+1}+(p-j)^{2 k+1} \equiv(2 k+1) j p\left(\bmod p^{2}\right)$ and summing over all j.
Let $p=101$. Plugging $n=0$ into 1 gives $f(0)=1$. Since $\operatorname{deg} f=2019$, we can write $f(n)=1+a n+g(n)$ where g is odd and all of its terms are of degree at least 3. Now using fact $2, p^{2} \mid g(0)+g(1)+g(2)+\cdots+g(p)$. This means

$$
f(0)+f(1)+f(2)+\cdots+f(100) \equiv p+a(1+\cdots+(p-1)) . \quad\left(\bmod p^{2}\right)
$$

So $2 p+a p(p-1) \equiv 0\left(\bmod p^{2}\right)$ or $a p \equiv 2 p\left(\bmod p^{2}\right)$. Hence, $f(p)=1+a p \equiv 2 p+1\left(\bmod p^{2}\right)$. Plugging in $p=101$ gives $f(101) \equiv 203\left(\bmod 101^{2}\right)$.
7. For a positive integer n, let $f(n)=\sum_{i=1}^{n}\left\lfloor\log _{2} n\right\rfloor$. Find the largest $n<2018$ such that $n \mid f(n)$. Proposed by: Eric Neyman
Answer: 1013
First note that

$$
f\left(2^{r+1}-1\right)=\sum_{k=0}^{r} k \cdot 2^{k}=\sum_{i=1}^{r} \sum_{j=i}^{r} 2^{j}=\sum_{i=1}^{r}\left(2^{r+1}-2^{i}\right)=(r-1) 2^{r+1}+2
$$

Thus, if we write $n=2^{r+1}-1+m$, where $0 \leq m \leq 2^{r+1}$, we have

$$
f(n)=(r-1) 2^{r+1}+2+m(r+1)
$$

Thus, the condition $n \mid f(n)$ is equivalent (after subtracting $(r-1) n$ from $f(n))$ to

$$
2^{r+1}-1+m \mid 2+m(r+1)+r-1-m(r-1)=2 m+r+1
$$

Now, the right-hand side is more than zero times the left-hand side but more than twice the left-hand side, so $n \mid f(n)$ if and only if $2^{r+1}-1+m=2 m+r+1$, i.e. $m=2^{r+1}-r-2$, so $n=2^{r+2}-r-3$.
The largest such value that is less than 2018 is $2^{10}-8-3=1013$.
8. Call a positive integer n compact if for any infinite sequence of distinct primes p_{1}, p_{2}, \ldots there exists a finite subsequence of n primes $p_{x_{1}}, p_{x_{2}}, \ldots p_{x_{n}}$ (where the x_{i} are distinct) such that

$$
p_{x_{1}} p_{x_{2}} \cdots p_{x_{n}} \equiv 1 \quad(\bmod 2019)
$$

Find the sum of all compact numbers less than $2 \cdot 2019$.

Proposed by: Rahul Saha

Answer: 14112
Claim 1: Let n be a compact number. Then we must have $a^{n} \equiv 1(\bmod 2019)$ for all $(a, 2019)=1$.
Proof: By Drichlet's theorem on arithmetic progressions, we can find infinitely many primes $p \equiv a(\bmod 2019)$. Letting our sequence be composed only of these primes, we must have $a^{n} \equiv 1(\bmod 2019)$.
Claim 2: If $a^{n} \equiv 1(\bmod 2019)$ for all $(a, 2019)=1$, then n is a compact number.
Proof: Note that by taking all large enough primes in our sequence, we can assume $\left(p_{i}, 2019\right)=$ 1. But some residue $a \bmod 2019$ must appear infinitely many times, which gives us $a^{n} \equiv 1$ (mod 2019), as desired.
Claim 3: Let n be the minimal compact number. Then all compact numbers are multiples of n, and conversely any multiple of n is a good number.
Proof: Let N be another compact number, and suppose $N=n q+r$, but then we have $a^{N} \equiv a^{r} \equiv 1$ which would make r the minimal good number, a contradiction unless $r=0$. The other direction is trivial.
Claim 4: The minimal compact number is 672.
Proof: Let x and y be primitive roots modulo 3 and 673 . Then the order of $x y$ is $\frac{2 \cdot 672}{(2,672)}=672$, so the minimal compact number is at least 672 . Note, $a^{672} \equiv 1(\bmod 3)$ and $a^{672} \equiv 1$ $(\bmod 673)$ therefore $a^{672} \equiv 1(\bmod 2019)$ for all $(a, 2019)=1$. Therefore the minimal compact number is 672 .
Therefore, the sum is $672 \cdot(1+2+3+4+5+6)=672 \cdot 21=14112$.

