
PUMaC 2019 Power Round Solutions

November 9, 2019

1 1.4.1

[5 points]

1. Note that A ∪Ac = Ω, so P(A) + P(Ac) = P(Ω) = 1.

2. Note that B = A ∪ (B \A), so P(B) = P(A) + P(B \A) ≥ P(A).

1.1 Grading

2 points for the first part, 3 points for the second.

2 1.4.2

[5 points]

1. Since f(t) ≥ 0 and (X − E(X))2 ≥ 0, we know Var(X) ≥ 0.

2. If Var(X) = 0, it follows for every term in the variance sum, f(t) = 0 or P(X = t) = 0.
This means t = E(X) or P(X = t) = 0. If X is nonrandom, then t = E(X) for all t,
so Var(X) = 0.

3. We find

Var(X) = E((X − E(X))2) = E(X2 − 2XE(X) + E(X)2)

= E(X2 − 2XE(X) + E(X)2)

= E(X2)− E(2XE(X)) + E(X)2

= E(X2)− 2E(X)2 + E(X)2

= E(X2)− E(X)2.

4. We know E(XY ) = E(X)E(Y ) if and only if X and Y are independent random
variables. Then

Var(X + Y ) = E((X + Y − E(X + Y )))2

= E((X + Y )2)− E(X + Y )2 (Part 3)

= E(X2) + E(XY ) + E(Y X) + E(Y 2)− (E(X) + E(Y ))2

= 0 (If and only if E(XY ) = E(X)E(Y ))



5. Using part 3 and linearity of expectation, note that Var(aX) = E((aX)2)−E(aX)2 =
a2E(X2)− a2E(X)2 = a2(E(X2)− E(X)2) = a2 Var(X).

2.1 Grading

1 points for each part.

3 1.4.3

[5 points] We induct on the number of sets. Note that

P(A1 ∪A2) = P(A1 ∪ (A2 \A1)) = P(A1) + P(A2 \A1) ≤ P(A1) + P(A2).

By induction we can find that

P(A1 ∪ · · · ∪An) ≤ P(A1 ∪ · · · ∪An−1) + P(An),

hence the desired result.

3.1 Grading

2 for having the idea to use induction, 5 for complete proof.

4 1.4.4

[10 points] We find that

E(X) =
∑
x

xP(X = x)

≥
∑
x≥t

xP(X = x) (t is nonnegative)

≥ t
∑
x≥t

P(X = x)

= tP(X ≥ t).

This proves the desired statement.

4.1 Grading

4 points for writing out the formula for expected value, 10 for finishing the proof.

5 1.5.1

[5 points] If X is the value of the roll of a die, then E(X) = 1
6(1 + 2 + 3 + 4 + 5 + 6) = 7

2 .

The variance is Var(X) = E(X2) − E(X)2 = 1
6(12 + 22 + 32 + 42 + 52 + 62) − 72

22
= 35

12 .
For one hundred rolls, let the values be X1, . . . , X100. Since the rolls are independent
E(X1 + · · · + X100) = 100E(X1) = 350. For the variance, we find Var(X1 + · · · + X100) =
100 Var(X1) = 875

3 .
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5.1 Grading

2 points for expected value, 3 for variance.

6 1.5.2

[5 points] We have three cases: if we roll RR we are done; if we roll RB we have to
start over with two extra rolls; if we roll B we start over with one extra roll. Therefore,
E(R) = 1

4(2) + 1
4(2 + E(R)) + 1

2(1 + E(R)), so E(R) = 6.
Similarly, E(K) = 1

262
(2) + 1

26 ·
25
26(E(K) + 2) + 25

26(E(K) + 1). Solving for E(K) gives
E(K) = 702.

For the random variable M , we claim that this is the random variable representing the
minimal number of draws needed to draw one red card plus 1. To observe this, note that
P(M = t) implies that the last two cards drawn are either RR or RB, and that for every
pair of adjacent cards before, they are either BB or BR. But this requires that the first
t − 2 cards are B and the t − 1st card is red. Hence, it suffices to compute the minimal
number of draws it takes to draw a red card, and then add 1. To do this, we repeat the
same argument as before: E = 1

2 + 1
2(E + 1), which means that E2 = 1 and so E = 2, which

means that E(M) = 3.

6.1 Grading

1 point for each of R,B,K and 2 points for each M . Subtract at most 1 point if there is a
calculation error but the reasoning is correct.

7 1.5.3

[10 points] First, E(X10X20) = 11
2 ·

21
2 = 231

4 .
For the variance,

Var(X10X20) = E
(
(X10X20)2

)
= E(X2

10X
2
20) + E(−2X10X20)2 + E(X10X20)2

=

(
12 + · · ·+ 102

10

)(
12 + · · ·+ 202

20

)
− E(X10X20)2

=
11 · 21

6

21 · 41

6
−
(

11 · 21

4

)2

=
35035

16
.

By manual computation, we observe E(X2
10) = 21·11

6 , E(X3
10) = 112·10

4 , and E(X4
10) =

25333
10 . This means

Var(X10(X20 −X10)) = E(X2
10X

2
20)− 2E(X3

10X20) + E(X4
10)− E(X10X20)2

+2E(X10X20)E(X2
10)− E(X2

10)2 =
106799

80

3



7.1 Grading

3 for expectation of X10X20, 3 for variance 4 for variance of X10(X20−X10). Subtract up
to 2 points for an error in calculation with correct reasoning.

8 1.5.4

[5 points]
A is the event that the second coin lands heads. B is the event that the first coin lands

head. We want to compute

P[A|B] = P[A ∩B]/P[B].

We have that

P[A] =
1

3
+

1

3
· 1

2
=

1

2

P[A ∩B] =
1

3
· 1

2
· 1

2
+

1

3
· 1

2
· 1

2
=

1

6

So, the answer is (1/6)/(1/2) = 1/3 . If you return the first coin, the second coin is

independent of the first coin. From symmetry, answer is 1/2.

8.1 Grading

3 points for first part a d 2 points for the second part.

9 1.5.5

[20 points] Let p = 3k + 1 be a prime sufficiently large (so that S have distinct modulos in
p). Consider T = {k + 1, . . . , 2k + 1}. Modulo p, T is sum-free. We will pick a random
a ∈ Z∗p and compute the number of elements in S which land in T (modulo p). This subset
will be sum-free. The probability that s ∈ S will land in T is (k + 1)/(p− 1) >= 1/3 there
is a unique a which makes s equal to k+1, k+2, . . . , 2k+1. From Linearity of Expectation,
the expected number of elements that land in T is (1/3)|S|, which suffices for the proof.

9.1 Grading

5 points for trying to use expectation, another 5 for looking at the probability that s ∈ S
land in T .

10 1.5.6

[10 points]
There are

(
n
3

)
triangles. Each triangle has a probability of p3 of being in the graph. So,

there are
(
n
3

)
p3 expected triangles.
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10.1 Grading

5 points for looking at each triangle separately. 10 for complete solution. Subtract up to 2
points for error in computation with correct reasoning.

11 1.5.7

[30 points] Take 32n edges, randomly, uniformly, independently with repetitions from A to
B, then fix X ⊆ A, Y ⊆ B, |X| = |Y | = n

4 . Now we have that P (no edge is from X to Y ) =

(1 −
n2

16
n2 )32n = (1 − 1

16)32n < e−2n. There exists only
(
n
n
4

)2
pairs of X,Y which is < 22n.

Thus since 22ne−2n << 1 there is such graph.

11.1 Grading

5 points for looking at 32n edges randomly uniformly independently and 10 looking at the
probability at P (no edge is from X to Y ). The rest for finishing the proof.

12 2.1.1

[20 points] Second part implies the first part. The second part is equivalent to proving that as
m goes to infinity the probability of P being not ε-regular goes to 0, and this follows from the
union bound, namely P (U,W not ε-regular) ≤

∑
any pair X,Y , |X| ≥ ε|U ,|Y | ≥ ε|W | P (X,Y is not ε regular) ≤

1.

12.1 Grading

5 points for proving that second part implies the first part. Another 5 for doing manipulation
with probabilities. The rest for finishing the proof.

13 2.1.2

[10 points] Since d2(U,W ) ≤ 1 for all U,W and
∑

U,W,unordered |U ||W | ≤
(
n
2

)
, where n is the

number of vertices of the graph it follows that q(P ) ≥ 0, q(P ) ≤ 1
2 .

13.1 Grading

4 for looking at d(U,W ) ≤ 1 and 4 for looking at unordered pairs. The rest for finishing
the proof.

14 2.1.3

[10 points] Follows immediately from lemma 2.1.1.

5



14.1 Grading

At most 5 points if a solutin mentions lemma 2.1.1 but is not completed.

15 2.1.4

[30 points] Since (U,W ) is not ε-regular there exists U1,W1 ⊆ U,W , |U1| ≥ ε|U |, |W1| ≥
ε|W |, |d(U1,W1)−d(U,W )| ≥ ε. Let Z be as before. We have that var(z) = n2

|U ||W |(q(U ,W)−
q(U,W )). On the other hand since Z differs from E(z) = d(U,W ) by ≥ ε with probability

≥ |U1||W1|
|U ||W | thus var(z) ≥ |U1||W1|

|U ||W | ε
2. The result follows from this.

15.1 Grading

10 points for showing that var(z) = n2

|U ||W |(q(U ,W)− q(U,W )). Another 10 for looking at

E(z) and difference with d(U,W ). At most 20 for looking at these but not finishing the
proof.

16 2.1.5

[50 points] Put n
k ≥ c = |V1| = ... = |Vk| ≥ (1−ε)n

k . For all 1 ≤ i < j ≤ k define a
partition Vij of Vi into ≤ 2 parts and a partition of Vj int ≤ 2 parts as follows: if (Vi, Vj)
is ε-regular Vij , Vji are trivial(only one part) otherwise we partition as in previous proof.
Take a paritition Vi of each Vi defined by the Venn diagram of all k − 1 partitions of Vi,j .

Vi has at most 2k−1 parts. To make their sizes equal let b = [ c
4k

] = |Vi|
4k

and split each part
of Vi into disjoint sets of sizes b each, and if there is something remaining add it to the
exceptional sets V ′0 . Now |V ′0 | ≤ |V0|+ bk2k−1 ≤ |V0|+ c

4k
k2k−1 ≤ |V0|+ n

2k
(n is the number

of vertices of the graph), since ck ≤ n. Also note that l ≤ k cb ≤ k4k. Since P is not ε-regular

by problem 2.1.4 and by lemma 2.1.1 we have that q(P ′) ≥ q(P ) + εk2 c2

n2 ε
4 ≥ q(P ) + 1

2ε
5,

where the last inequality follows from kc ≥ (1− ε)n ≥ 3
4n.

16.1 Grading

35 for showing that there exists a new partition of Vi such that it’s equitable and |V ′0 | ≤
|V0|+ n

2k
. 10 for mentioning problem 2.1.4 and lemma 2.1.1

17 2.1.6

[15 points] Start with any partition into t equal parts such taht |V0| ≤ t(≤ εn
2 for large

n). As long as it is not ε-regular apply 2.1.5 and note that index increases by at least 1
2ε

5

and is never bigger than 1
2 so it stops in at most s steps and the size of the exceptional set

incerases by at most s n2t ≤ (1 + 1
e5

)nε
6

4 = nε6

4 + nε
4 ≤

nε
2 . (because 2t−2 ≥ 1

ε6
).

17.1 Grading

10 points for applying 2.1.5 by starting from a partition.
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18 2.2.1

[50 points] Take, say, ε
10 regular partition of G with t = 10

ε , which exists by Collegiate
Splitting theorem. V = v0 ∪ V1...Vk, t ≤ k ≤ T = T (t, ε). Remove now the following edges:

1. All edges incident with V0(≥ εn2

10 edges)

2. all edges inside sets Vi, ≤ εn2

20 edges, as graph of edges removed here is of max degree
|V1| ≤ n

t = εn
10

3. all edges between irregular pairs which are not ε-regular, ≤ ε
10k

2(nk )2 = εn2

10 edges

4. all edges between pairs of density ≤ 3ε
10 , at most

(
k
2

)
3ε
10(nk )2 ≤ 3

20εn
2.

Altogether number of edges removed is ¡εn2. Thus at least one triangle is left. This
triangle has vertices in 3 distinct parts Vp, Vq, Vr so that all pairs of parts are ε

10 -regular

and of density ≥ 3ε
10 . Wlog let pairs V1, V2, V3. Note that all vertices v ∈ V1 but ≤ ε|V1|

10
have ≥ (d(V1, V2) − ε

10)|V2| neighbors in V2, since otherwise those that do not, and V2

violate ε/10-regularity of (V1, V2). Similarly all v ∈ V1 have ≥ (d(V1, V3)− ε
10)|V3| ≥ 2ε

10 |V3|
neighbors in V3. Fix v ∈ V1 with |N(v) ∩ V2| ≥ 2ε

10 |V2| |N(v) ∩ V3| ≥ 2ε
10 |V3|(N(v) is

neighbors of v). Then by ε
10 regularity of V2, V3 there exists ≥ ( 2ε

10

2|V2||V3| 2ε10 edges between

N(v) ∩ V2 and N(v) ∩ V3, so v belongs to ≥ 8ε3

103
|V1| ≥ 8ε3

103
( n

2T )2. Number of such v is

≥ (1 − 2ε
10)|V1| > n

2T which implies that the number of triangles is ≥ 8ε3

103
( n

2T )3 proving the

theorem with δ = 8ε3

1000
1

8T 3 .

18.1 Grading

5 points for looking at cε regular partition. 10 removing the edges as in the proof such that
there’s at most εn2 of them. 35 for finishing the proof.

19 2.2.2

[60 points] Bob wins. We will prove that for any ε > 0 there exists n0 such that for any
|A| ⊆ εn A contains a three term arithmetic progression. Let G be a three-partite graph
with classes of vertices of sizes h1, h2, h3, H1, H2, H3 each beign a copy of [n]. For any
k ∈ [n], a ∈ A add to the graph the three edges of a triangle on vts h ∈ H1, h + a ∈
H2, h + 2a ∈ H3 note that all the make ≥ εn2 triangles which are pairwise edge disjoint.
Since knowing two vertices among h, h + a, h + 2a we can reconstruct h, a uniquely, we
have to delete ≥ εn2 = ε

9(3n)2 edges to destroy all triangles. By Coupon theorem there is
≥ δ(ε)n3 triangles, and in particular there is at least one triangle besides the initial ones,
this gives a, b, c distinct and h ∈ [n] with h+ a+ b = h+ 2c which implies a+ b = 2c.

19.1 Grading

5 for reducing to arithmetic progression. Another 10 for wiritng that with an equivalent
graph. 45 for finishing the proof.
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20 2.2.3

[60 points] Let |A| ⊂ [n] Fix d which we will choose later, |A| = {
∑s

i=0 xid
i ≤ n, 0 ≤

xi <
d
2 ,
∑
x2
i = K}, where K is choosen to maximize |A|. Note now that by pigeonhole

|A| ≥ ( d
2

)s+1

(s+1)( d
2

)2
, choose d = 2

√
logn and then |A| ≥ n

2O(
√

logn)>n1−ε
for any ε, |A| has no three

term arithmetic progression so |A| does not have two numbers such that one is the mean of
the other two.

20.1 Grading

40 for choosing the right A, 20 for finishing the proof.

21 2.2.4 and 2.2.5

[30+30 points] For any a1, a2 ∈ A there exists a unique (x, y) ∈ {2, 3, .., 2n} × {2, 3, .., 2n}
such that a1 = (x, y) − a2. This means that for any a1 ∈ A P (a1 ∈ Ax,y) = |A|

(2n−1)2
≥

εn2

4n2 ≥ ε
4 . By linearity of expectation expected size of |A ∩ Ax,y| is ≥ |A|34 ≥

ε2

4 = δn2. Put
B = A ∩ A′. Suffices to show that contains the triple for either d > 0 or d < 0. Define
a three partite graph on classes of vertices V1 = vertical lines, V2 = horizontal lines, V3=
line swith slope −1(through lattice points). Two vertices are adjacent if and only if the
corresponding intersection of the corresponding lines lies in B. For any b in B we get a
triangle corresponding to the three lines in V1, V2, V3 that pass through b. The triangles are
edge disjoint which implies that we have to remove |B| ≥ δn2 ≥ δ

16(|V1|2 + |V2|2 + |V3|2) to
remove all triangles which implies that by Coupon theorem there exists another triangle.
Similarly, other two cases hold as well.

21.1 Grading

2.2.4. 10 points for looking at the probability that a1 ∈ A. 20 for the rest of the solution.
2.2.5 15 for looking at the graph. 15 for finishing the proof.

22 2.2.6

[40 points]
We work in Z/(Mn + 1)Z for M = lcm(2019, 2020, 2039). Take the first n elements

of this set and take a subset of this that has |X| ≥ εn elements. Take sets H1, H2, H3

subsets of {1, . . . , 4040n} in the integers mod (Mn+ 1). Join vertices in the following way:
if a1 ∈ H1 and a2 ∈ H2 join them iff a2−a1 ∈ 2019X. Similarly join two elements in H2, H3

iff their difference a3−a2 is in 2020X and elements in H1 and H3 iff difference in 4039X. If
we remove all the triangles of the form h, h+ 2019x, h+ 4039x for x ∈ X, we have removed
at least n|X| ≥ εn2 triangles (pairwise disjoint). By triangle removal lemma, there are at
least δ(ε)n3 of them, so for n big enough there is at least another triangle besides the ones
we have removed. ∃ distinct a, b, c, s.t. h + 2019a + 2020b = h + 4039c, which is what we
want.

8



22.1 Grading

20 for looking at thee right graph and using Triangle removal lemma. 20 for finishing the
proof.

23 2.3.1

[50 points] We prove the statement that it holds if we need to remove at least εn2 triangles.
This is stronger since H contains a triangle. Refer to the proof of triangle removal lemma
and choose an ( ε

10)h regular partition and remove parts which are not ε
10 regular and of

density at least 3ε. Then count the number of copies of Kh1,h2,h3 in three pairs which are
regular and of big enough size, so that there is enough copies of Kh1,h2,h3 , hence of H.

23.1 Grading

24 2.3.2

[50 points] The theorem is called Erdós-Stone-Simonovits. Solutions are available online.
Google just in case. Proof: The lower bound is witnessed by the bipartite graph with almost
equal number of vertices ≤ 1. Suppose G has ≥ (1

4 + ε)n2. By Turan’s theorem this is ε
far from triangle-free. By the previous problem, G contains K(h, h, h) and hence H, where
|H| = h.

24.1 Grading

25 2.3.3

[75 points] Take an ε
10 -regular partition. Overcount the number of suchG, N(G) by counting

the number of ways to construct G from G1, M(G : G1). N(G) ≤ N(G1)M(G : G1). Now
we specifically select the graph G1 to be graph that we get from G when we do the ε

10
partition and then take out all the edges incident to V0, between pairs which are not regular
and between pairs with density less than ε

10 . We want to find A(G1). Choose k2

4 pairs

out of
(
k
2

)
in
((k2)

k2

4

)
ways.Furthermore we look at how to reconstruct G from G1 to get that

B(G : G1) ≤ 2k2εn
2
, and choosing the sets V0, V1, . . . , Vk adds in total A(G) ≤ 2kn!2(1+4ε)n2

4 .

logA(G) = 2
n2

4
(1+o(1)).

25.1 Grading

26 2.3.4

[60 points] We use the bound T of the regularity lemma and let ε = c3

100 and = 1
T (ε, 1

ε
)
c3

100 .

We do the triangle removal proof and use the following fact: Note that all but ≤ ε|V1|
10

vertices in V1 have degree ≥ (d(V1, V2) − ε
10)|V2| (otherwise the ε/10 regularity would be

violated).

9



Now we find H as a subgraph of the induced subgraph on V1 and V2. We algorithmically
find vertices u1, . . . , uh, where h = |H|, such that in step i we choose ui, and that they
alterante between V1 and V2. In particular we use ε regularity to prove that we can always
choose such a vertex. We maintain sets Ci,j vertices that uj can be chosen from after step
i, at the start they are V1 or V2. In each step we choose ui from Ci−1,i and update the
rest. If k = b1

ε we prove that |Ci−1,i ≥ 4εnk by induction. Updating the ones from the
same set V1 is just deducting the currently chosen vertex. Updating the others uses the fact
that the degree is at most 3, and that so far at most δn have been removed to prove that
|Ci,j | ≥ . . . ≥ 4εnk .

26.1 Grading

27 2.3.5

[75 points]
We are basically looking for a k-regular graph. We apply Collegiate partition theorem

with the argument for equitable partition (secretly Szemeredi’s regularity lemma). There
∃ a ε/10-regular partition. It is enough to prove the claim for a small ε. Start imitating
the proof of the triangle removal lemma and take a ε/10 regular pair V1, V2. Important:

Note that all but ≤ ε|V1|
10 vertices in V1 have degree ≥ (d(V1, V2) − ε

10)|V2| (otherwise the
ε/10 regularity would be violated). Let the set of those that have a high degree in V1 be U1.
Similarly define U2. For v ∈ U1, N(v) ∩ U2 ≥ (d(V1, V2)− 2ε

10)|V2|. A symmetric statement
holds for 2, 1. WLOG |U1| = |U2|. Then when restricted to U1, U2, the pair is ε

9 regular by
a short calculation.

Then the idea is to periodically find a perfect matching between vertices in U1, U2, and
remove those edges and show that the perfect matching conditions still hold, performing
this in total ε2|U1| times. The removed edges will make a ε2|U1| regular subgraph.

The minimal degree after removing these edges in U1 will be d′min = dmin−ε2|U1| ≥ ε|U1|.
Using regularity prove Hall’s condition. (There are three cases that depend on the size

of the subset of U1 that we pick. The first one is |X| ≤ ε|U1|, the second one is |X| between
this and (1− ε

9)|U2|, and the third one is bigger than this.) Refer to Igor for clarification.

27.1 Grading

28 3.1.1

[10 points] When we remove or add an edge in graph G, the new graph is isomorphic to the
graph H with the corresponding edge removed so this part holds. The second part is not
true.

28.1 Grading

29 3.1.2

[15 points]

10



This part requires some sort of explanation, i.e. description of the tester and reasoning
why is it true.

• This is testable.

• This is also testable.

• Trivially testable, since for large n no graphs are ε-far from having k-clique.

• Trivially testable, no graph is ε-far from this property since you always only add a
linear number of vertices, so it’s less than 2 for large enough n.

• This is testable. They are only supposed to fill in the details here in the theorem after
this problem, i.e. the following text and the theorem that follows it:

Take the ε-tester to be the following: choose randomly uniformly 100
ε2

vertices and
accept if and only if the induced subgraph on them is 3-colorable. Here, the tester is
also one-sided (if G is 3-colorable it will always accept). In order to prove correctness
we have to show the following.

If G = (V,E) with |V | = n is ε-far from 3-colorable then the induced subgraph on a
random set of 100

ε2
vertices is with high probability not 3-colorable.

29.1 Grading

30 3.1.3

[30 points] By triangle removal if G is ε-far from triangle free and has n vertices then has ≥
δn3(δ = δ(ε)) triangles. If we take randomly 3 vertices, probability that they form a triangle

is≥ δn3

(n3)
≥ 6δ. Doing it 1

δ times we have that P (no triangle found|G is ε-far from triangle free) ≤

(1 − 6δ)
1
6 ≤ e−6. Thus deciding according to such 1

δ samplings is a good 1-sided ε-tester.
Taking randomly 3

δ vertices and deciding according to the induced subgraph on them is a
1-sided ε-tester.

30.1 Grading

31 3.1.4

[40 points] Let K1,t be the star with t edges. Let d1 ≥ d2 ≥ .. ≥ dn be the degrees of

vertices in G let d̄ =
∑
di
n ≥ 2εn be the average degree. Number of homomorphisms from

K1,t to G is
∑n

i=1 d
t
i ≥ nd̄t ≥ n(2ε)t by Jensen. Now we can classify these homomorhpisms

according to ordered set of t vertices to which the leaves are mapped. There exists N = nt

such classes. Let D1, D2, .., DN be numnbers of homomorphisms in the classes, let D̄ be

their average, D̄ ≥ n(2εn)t

N = n(2ε)t. The number of homomorphisms from Ks,t to G is∑N
i=1D

s
i ≥ ND̄s ≥ N(n(2ε)t)s = (2ε)stns+t. Number of homomorphisms which are not

1− 1 is ≤ o(ns+t) and thus the number of ordered copies is at least (1− o(1))(2ε)stns+t ≥
c(s, t)εh

2/4nh.

11



31.1 Grading

32 3.1.5

[15 points] Let m,X be as in the previous lemma. Let G be a 5 partite graph on vertices
classes V1, .., V5, and |Vi| = im. Denote Vi = {1, ..., im}, Vi are pairwise disjoint. For any
j ∈ [m] and x ∈ X take a copy of C5 on Vi vertices j ∈ V1, j + x ∈ V2, .., j + 4x ∈ V5. There

exists m|X| ≥ m2

210(
√

logm)
copies of C5 which are pairwise disjoint. Every edge is in exactly

one copy of C5 in G or equivalently G contains exactly m|X| copies of C5. Let r = n
15m . Let

G′ be the r-blow up of G. Let ε = 1
210
√
logm

which implies m = 2
1

100
(log ( 1

ε
))2=( 1

ε
)

1
100 log 1

ε . Note

that now G′ contains m|X|r5 copies of C5(r5 for each C5 of G). Thus to destroy all copies of
C5 in G we have to delete at least m|X|r5/r3 ≥ m|X|r2 ≥ Ω(εn2) edges so G is Ω(ε)C5-free.

The total number of copies in G is m|X|r5 ≤ m2(n/15m)5 ≤ n5/m3 = εΘ(log 1
ε

)n5 which
proves the claim.

32.1 Grading

33 3.1.6

[50 points] Note that if we may assume that any tester pick(perhaps adaptevely) some set of
y vertices and queries the

(
y
2

)
pairs on them. Also adaptiveness does not help since the input

can be given after randomly permuting the vertices. Thus, we can WLOG assume that any
tester simply looks at an induced subgraph and decides based on this since. By 3.1.4 we
have proved the direction H is bipartite =⇒ PH is easily testable. To prove the other
implication we use the theorem 3.1.IV . If we choose y random vertices G is ε-far from PH

and no of H in G is ≤ εθ log( 1
ε

)nh, probability of seeing a copy of H is ≤ εθ(log 1
ε

)nh
(yh)
(nh)

= o(1)

for y = 1
ε

o(log( 1
ε

))
, which implies that we need at least (1

ε )Ω(log 1
ε

) queries, i.e. it’s not easily
testable if H is not bipartite.

33.1 Grading

34 3.2.1

[25 points] The first way to solve this is just to prove theorem 3.1.II, by showing that there
exists n such that with less than c

√
n queries we can’t distinguish between two random

graphs on {1, 2, . . . , n2 } and {n2 + 1, . . . , n} and two copies of the same random graph.
Alternatively, take a similar construction as in theorem 3.1.II, but with 2 parts instead of
2. Then the proof is similar, i.e. prove that we cannot distinguish between two random
graphs on n vertices with three parts with less than o(

√
n) queries(or any other function of

n).
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34.1 Grading

35 3.2.2

[15 points]
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