P U M .. C

Algebra A

- 1. Let $f(x) = \frac{x+a}{x+b}$ satisfy f(f(f(x))) = x for real numbers a, b. If the maximum value of a is $\frac{p}{q}$, where p, q are relatively prime integers, what is |p| + |q|?
- 2. Let C denote the curve $y^2 = \frac{x(x+1)(2x+1)}{6}$. The points $(\frac{1}{2}, a), (b, c)$, and (24, d) lie on C and are collinear, and ad < 0. Given that b, c are rational numbers, find $100b^2 + c^2$.
- 3. Let $\{x\} = x \lfloor x \rfloor$. Consider a function f from the set $\{1, 2, \ldots, 2020\}$ to the half-open interval [0, 1). Suppose that for all x, y, there exists a z so that $\{f(x) + f(y)\} = f(z)$. We say that a pair of integers m, n is valid if $1 \le m, n \le 2020$ and there exists a function f satisfying the above so $f(1) = \frac{m}{n}$. Determine the sum over all valid pairs m, n of $\frac{m}{n}$.
- 4. Let P be a 10-degree monic polynomial with roots $r_1, r_2, \ldots, r_{10} \neq 0$ and let Q be a 45-degree monic polynomial with roots $\frac{1}{r_i} + \frac{1}{r_j} \frac{1}{r_i r_j}$ where i < j and $i, j \in \{1, \ldots, 10\}$. If P(0) = Q(1) = 2, then $\log_2(|P(1)|)$ can be written as $\frac{a}{b}$ for relatively prime integers a, b. Find a + b.
- 5. Suppose we have a sequence a_1, a_2, \ldots of positive real numbers so that for each positive integer n, we have that $\sum_{k=1}^{n} a_k a_{\lfloor \sqrt{k} \rfloor} = n^2$. Determine the first value of k so $a_k > 100$.
- 6. Given integer n, let W_n be the set of complex numbers of the form $re^{2qi\pi}$, where q is a rational number so that $qn \in \mathbb{Z}$ and r is a real number. Suppose that p is a polynomial of degree ≥ 2 such that there exists a non-constant function $f: W_n \to \mathbb{C}$ so that p(f(x))p(f(y)) = f(xy) for all $x, y \in W_n$. If p is the unique monic polynomial of lowest degree for which such an f exists for n = 65, find p(10).
- 7. Suppose that p is the unique monic polynomial of minimal degree such that its coefficients are rational numbers and one of its roots is $\sin \frac{2\pi}{7} + \cos \frac{4\pi}{7}$. If $p(1) = \frac{a}{b}$, where a, b are relatively prime integers, find |a + b|.
- 8. Let a_n be the number of unordered sets of three distinct bijections $f, g, h : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ such that the composition of any two of the bijections equals the third. What is the largest value in the sequence $a_1, a_2, ...$ which is less than 2021?