
Algebra A Solutions

1. Let f(x) = x+a
x+b satisfy f(f(f(x))) = x for real numbers a, b. If the maximum value of a is p

q ,

where p, q are relatively prime integers, what is |p|+ |q|?
Proposed by: Henry Erdman

Answer: 7

Substituting in f(x) for x in f(x) twice yields that f(f(f(x))) = (1+2a+ab)x+(a+a2+ab+ab2)
(1+a+b+b2)x+(a+2ab+b3) .

We note that the coefficient of x in the denominator must be zero, and thus we have that
a = −b2−b−1. This parabola opens down and has its vertex at b = − 1

2 , giving an upper limit
on a of − 3

4 . We now need to verify that (a, b) = (− 3
4 ,−

1
2 ) satisfies the rest of the problem. We

have 1+2a+ab = 1− 3
2 + 3

8 = − 1
8 as the coefficient of x in the numerator, − 3

4 + 9
16 + 3

8−
3
16 = 0

as the constant in the numerator, and − 3
4 + 3

4 −
1
8 = − 1

8 as the constant in the denominator.
Thus, we do indeed have a solution, and it is the greatest possible value of a. So, our answer
is | − 3|+ |4| = 7 .

2. Let C denote the curve y2 = x(x+1)(2x+1)
6 . The points ( 1

2 , a), (b, c), and (24, d) lie on C and
are collinear, and ad < 0. Given that b, c are rational numbers, find 100b2 + c2.

Proposed by: Sunay Joshi

Answer: 101

By plugging x = 1
2 into the equation for C, we find a = ∓ 1

2 . Similarly, d = ±70. Since ad < 0,
there are only two possible pairs (a, d), namely (a, d) = (− 1

2 , 70) or ( 1
2 ,−70).

Suppose (a, d) = (− 1
2 , 70). Then the equation of the line through ( 1

2 ,−
1
2 ) and (24, 70) is

y = 3x−2. Plugging this into the equation for C, we find (3x−2)2 = x(x+1)(2x+1)
6 . Simplifying,

we find 2x3 − 51x2 + . . . = 0.

At this point, instead of solving this equation explicitly, we use a trick. Since ( 1
2 ,−

1
2 ) and

(24,−70) lie on this line, x = 1
2 and x = 24 are roots of this cubic. Thus, the remaining root

x = b must satisfy Vieta’s Formula for the sum of roots! We get b+ 1
2 + 24 = 51

2 , thus b = 1.
Plugging this into the equation of our line, we find c = 1, hence (b, c) = (1, 1).

By the symmetry of C across the x axis, the other case yields (b, c) = (1,−1). In either case,

we find an answer of 100 · 12 + 12 = 101 .

3. Let {x} = x−bxc. Consider a function f from the set {1, 2, . . . , 2020} to the half-open interval
[0, 1). Suppose that for all x, y, there exists a z so that {f(x) + f(y)} = f(z). We say that a
pair of integers m,n is valid if 1 ≤ m,n,≤ 2020 and there exists a function f satisfying the
above so f(1) = m

n . Determine the sum over all valid pairs m,n of m
n

Proposed by: Frank Lu

Answer: 1019595

We will consider the set of all possible images for f , as this is the only restriction we are given
on our function.

First, suppose that f(x) was irrational for some value of x. Then, it follows that {n ∗ f(x)}
is in the image of f for all n ∈ N. But this is impossible since our domain has only finitely
many elements. Thus, it follows that our function can only be rational-valued. By repeating
this argument, we also know that the denominator of f(x) must be at most 2020.

We now claim that all such values are valid for f(1). To see this, let f(x) = {xf(1)}. The fact

that our condition is satisfied is clear. We thus find
∑2020
i=1

∑i−1
j=0

j
i =

∑2020
i=1

i−1
2 = 2019∗505 =

1019595 is our answer.
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4. Let P be a 10-degree monic polynomial with roots r1, r2, . . . , r10 6= 0 and let Q be a 45-
degree monic polynomial with roots 1

ri
+ 1

rj
− 1

rirj
where i < j and i, j ∈ {1, . . . , 10}. If

P (0) = Q(1) = 2, then log2(|P (1)|) can be written as a
b for relatively prime integers a, b. Find

a+ b.

Proposed by: Matthew Kendall

Answer: 19

We can factor Q as a product of its roots:

Q(x) =
∏
i<j

(
x− 1

ri
− 1

rj
+

1

rirj

)
.

Then we see

Q(1) =
∏
i<j

(
1− 1

ri
− 1

rj
+

1

rirj

)
=
∏
i<j

1

rirj
(1− ri)(1− rj) =

1

(r1r2 · · · r10)9
P (1)9.

Hence 1
29 |P (1)|9 = 2, so |P (1)| = 2

10
9 , giving an answer of 19 .

5. Suppose we have a sequence a1, a2, . . . of positive real numbers so that for each positive integer
n, we have that

∑n
k=1 akab

√
kc = n2. Determine the first value of k so ak > 100.

Proposed by: Frank Lu

Answer: 1018

Note: On the original algebra test, we had forgotten to include the phrase “positive real num-
bers.”

Notice that this relation becomes the equation that an = 2n−1
ab

√
nc
, by subtracting this for n and

n− 1. From here, to figure out when this is larger than 100, we need to make some deductions
about the rough behavior of this sequence. Notice here that, trying smaller values, we have
that a2 = 3, a3 = 5, a4 = 7/3, a5 = 3, a6 = 11/3.

First, notice that an = 2n−1
2b
√
nc−1ab

√
b
√
ncc >

√
nab
√
b
√
ncc. Observe then that for n = 1295 =

64−1, notice that a1295 > 35a5 = 105, so hence our maximal value is going to be at most 1295.
In particular, we see that ab

√
b
√
ncc for our maximal value is either going to be a1, a2, a3, a4,

or a5. But notice however that b
√
b
√
ncc = 5; if it is 4, notice that this is at most 7

3
2n−1

2b
√
nc−1 <

7
3
1250
31 = 8750

93 < 100. And furthermore, if it is less than 4, we see that we can bound this more

crudely by 5 2n−1
2b
√
nc−1 < 5 2(b

√
nc+1)2−1

2b
√
nc−1 = 5 2b

√
nc2+4b

√
nc+1

2b
√
nc−1 = 5(b

√
nc+ 5/2 + 7/2

2b
√
nc−1 ). On the

one hand, we see that if b
√
nc ≤ 3, this is at most 5(3 + 5/2 + 7/2) < 45. On the other hand,

b
√
nc ≥ 4, so this is at most 5(15 + 5/2 + 1/2) < 90 < 100.

In particular, we require then that for our minimal value for n, we have that an = 6n−3
2b
√
nc−1 .

On one hand, again we can use our bounds above to see that this is bounded above by

3(b
√
nc + 5/2 + 7/2

2b
√
nc−1 ); we therefore need to have that b

√
nc + 5/2 + 7/2

2b
√
nc−1 > 33. But

with
√
n ≥ 25 in this particular subcase, this means that we have that b

√
nc+ 3 > 33, or that

b
√
nc > 30. We start with this being 31; we then get that an = 6n−3

61 . To be larger than 100,

this requires that 6n > 6103, or that n ≥ 1018 .

6. Given integer n, let Wn be the set of complex numbers of the form re2qiπ, where q is a rational
number so that qn ∈ Z and r is a real number. Suppose that p is a polynomial of degree ≥ 2
such that there exists a non-constant function f : Wn → C so that p(f(x))p(f(y)) = f(xy) for
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all x, y ∈Wn. If p is the unique monic polynomial of lowest degree for which such an f exists
for n = 65, find p(10).

Proposed by: Frank Lu

Answer: 100009

Note: On the original algebra test, we had forgotten the phrase “ r is a real number.”

Fix f(1) and p(x).

First, note that plugging in x = y = 1 yields that p(f(1))2 = f(1), and y = 1 yields that
p(f(x))p(f(1)) = f(x).

Hence, we see that the image of f is a root of the polynomial p(u)p(f(1))−u = 0, which in par-
ticular means that f has a finite image. Furthermore, we thus see that p(f(x))p(f(y))p(f(1))2 =
f(xy)p(f(1))2, which means that, in fact, that f(x)f(y) = f(1)f(xy)∀x, y ∈ Wn. If f(1) is
zero, then it follows that ∀x ∈Wn that f(x) = 0, so we consider when f(1) 6= 0. Then, we see
that, letting g(x) = f(x)/f(1) that g(x)g(y) = g(xy)∀x, y ∈Wn.

Since the image of g is finite, if there exists a value of x so that |g(x)| 6= 1, |g(x)| 6= 0, then
g(x), g(x2), . . . are all distinct, contradiction. Furthermore, g(x) = 0 for some x 6= 0 means
that g(x)g(y/x) = 0 = g(y)∀y ∈ Wn, so we take that we want |g(x)| = 1 for all x ∈ Wn. By
a similar logic, we see that g(x) must be a root of unity, as again we will run into the issue
where the image of g is infinite.

We see that if p is a prime not dividing n, then g(x) can’t ever be a pth root of unity, since
otherwise we could take the pth root of x to get another root (raising all of the roots to the
pth power yields a permutation of the roots). Thus, we see that the minimal possible value for
the degree of our polynomial is 5, which would then require it to have the 5th roots of unity
as roots.

Thus, we see that p(u)p(f(1)) − u = au5 − a for some complex number a, meaning that
p(u) = a

p(f(1))u
5 +u− a

p(f(1)) , which we can just write as p(u) = u+c(u5−1) for some complex

constant c. By monic, we see that p(x) = x5 + x− 1 yields that p(10) = 100009 .

7. Suppose that p is the unique monic polynomial of minimal degree such that its coefficients are
rational numbers and one of its roots is sin 2π

7 + cos 4π
7 . If p(1) = a

b , where a, b are relatively
prime integers, find |a+ b|.
Proposed by: Frank Lu

Answer: 57

We’ll first find the polynomial with roots that are sin 2nπ
7 + cos 4nπ

7 , where n goes from 1 to
6 and are integers. Then, we’ll show that this has minimal degree. Let this polynomial be q.

First, notice that
6∏

n=1
(x− sin 2nπ

7 − cos 4nπ
7 ) =

6∏
n=1

(x+ 2 sin2 2nπ
7 − sin 2nπ

7 − 1).

However, notice also that q(−x
2−3x
2 ) =

6∏
n=1

(−x
2−3x
2 + 2 sin2 2nπ

7 − sin 2nπ
7 − 1) =

6∏
n=1

(x +

2 sin 2nπ
7 + 1)(−x2 + sin 2nπ

7 − 1). Suppose that h is the monic polynomial with roots being the
sin 2nπ

7 . Then, notice that this is equal to 64h(−(x+ 1)/2)h(x/2 + 1).

We can explicitly find what h is, however. Notice that the equation giving that sin 7θ = 0,
using DeMoivre’s theorem, yields us the equation − sin7 θ + 21 sin5 θ cos2 θ − 35 sin3 θ cos4 θ +
7 sin θ cos6 θ = 0, or that − sin7 θ + 21 sin5 θ(1 − sin2 θ) − 35 sin3 θ(1 − sin2 θ)2 + 7 sin θ(1 −
sin2 θ)3 = 0.

Expanding this out, we see that this is − sin7 θ + 21 sin5 θ − 21 sin7 θ − 35 sin3 θ + 70 sin5 θ −
35 sin7 θ+7 sin θ−21 sin3 θ+21 sin5 θ−7 sin7 θ = 0. Simplifying, this is −64 sin7 θ+112 sin5 θ−
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56 sin3 θ + 7 sin θ = 0. Notice that this has 7 roots, but one of these is just 0; this yields us
that, in fact, h(x) = x6− 7

4x
4 + 7

8x
2− 7

64 . Furthermore, we see that this polynomial cannot be
factored further in the rationals; we can check this using Eisenstein’s criterion, for instance.

From here, we will show that, in fact, q = p. Once we have this, we see that p(1) = q(1) =

q(−(−2)
2−3∗(−2)
2 ) = 64h(1/2)h(0) = 64( 1−7+7·2−7

64 )(−764 ) = − 7
64 , which would yield our desired

answer of 57 .

To show that p is q, we know that p has to divide q. But in fact, notice that q has to be at
least degree 3, since p(−2x2 + x + 1) is a polynomial where sin 2π

7 is a root, so is divisible

by a sixth degree polynomial h. But notice that −2x2 + x + 1 + 2 sin2 2π
7 − sin 2π

7 − 1 =
(x−sin 2π

7 )(−2x−2 sin 2π
7 −1). However, notice that none of the other roots of p(−2x2 +x+1)

are roots of h; otherwise we have that − sin 2nπ
7 −

1
2 = sin 2mπ

7 for some integers m,n, or that
− 1

2 = sin 2mπ
7 + sin 2nπ

7 . But we see that this doesn’t occur; indeed, notice that both of these

sines can’t be negative (as sin π
7 > sin π

12 =
√
6−
√
2

4 > 1
4 ), and if one is negative and one is

positive, we require that either 1
2 is sin 3π

7 − sin π
7 or sin 2π

7 − sin π
7 .

None of these hold, though, as the second is 2 cos 3π
14 sin π

14 <
√

3 sin π
12 = 3

√
2−
√
6

2 , and the

other is 2 cos 2π
7 sin π

7 . But if this is 1/2, this means that 2 sin π
7 − 4 sin3 π

7 − 1/2 = 0, which is
not possible as we deduced that the polynomial of minimal degree is degree 6 for sin π

7 .

This forces us to have p = q, as desired.

8. Let an be the number of unordered sets of three distinct bijections f, g, h : {1, 2, ..., n} →
{1, 2, ..., n} such that the composition of any two of the bijections equals the third. What is
the largest value in the sequence a1, a2, ... which is less than 2021?

Proposed by: Austen Mazenko

Answer: 875

First, h := f ◦ g = g ◦ f , so f(h(x)) = f(g(f(x))) = g(x). Since g is bijective, this holds iff
g(f(g(f(x)))) = h(h(x)) = g(g(x))), so by analogous equations we find f2 = g2 = h2. But,
we also have h(f(x)) = g(x) =⇒ g(f(f(x))) = g3(x) = g(x) =⇒ g2(x) ≡ x; analogous
reasoning holds for the other two functions, so they must be involutions.

Suppose f ’s cycles are (a1, b1), (a2, b2), ..., (an, bn) (meaning f(a1) = b1, f(b1) = a1)) while
every other value is a fixed point of f . We will consider the number of possibilities for g (each
of which fixes h). To start, note f(g(a1)) = g(f(a1)) =⇒ f(g(a1)) = g(b1). If g(a1) = a1,
then g(b1) = b1 so a1, b1 are fixed points of g and (a1, b1) is a cycle in h. If g(a1) = b1, then
(a1, b1) is a cycle in g, and a1, b1 are fixed points in h. If g(a1) = ai or bi for some i > 1,
then g(b1) = bi, so g has cycles (a1, ai), (b1, bi). Furthermore, f(g(a1)) = bi, (a1, bi), (ai, b1)
are cycles in h. Finally, g(a1) cannot be a fixed point of f since then f(g(a1)) = g(a1) = g(b1),
contradicting bijectivity. Analogous reasoning holds for the other cycles of f .

The other possibility is to let x1 be a fixed point of f , and consider f(g(x1)) = g(f(x1)) = g(x1);
hence, g(x1) is also a fixed point of f . Either g(x1) = x1, meaning g(x1) = x1 and h(x1) = x1,
or g(x1) = x2 for some x2, implying h(x1) = x2.

Combining the above information is sufficient to form a recursion for an. Evidently, a0 = a1 =
a2 = a3 = 0. Now, for n ≥ 4 there are a few possibilities. First, n could be a fixed point of
f, g, and h, giving an−1 possibilities. Second, n could be paired with some other value m such
that (m,n) is a cycle in two of f, g, h and fixed by the third. There are n − 1 ways to select
m, 3 ways to determine which of f, g, h will fix m and n, and then an−2 triplets to pick from.
However, this situation is also possible when two of f, g, h are identical on {1, 2, ..., n−1}\{m},
and the third is the identity function on this set. WLOG f ≡ g and h is the identity: if f
fixes m,n while g does not, this will make f, g, h different on {1, 2, ..., n}. The number of ways
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for f ≡ g is simply the number of involutions on n − 2 elements, minus 1 for the case when
f, g, h are all the identity bijection. Let bn denote the number of involutions on n elements.
Evidently b0 = 1, b1 = 1, and for n ≥ 2 either n is fixed or it’s transposed with one of the other
n − 1 terms, so bn = bn−1 + (n − 1)bn−2. Hence, starting with index 0, the sequence {bn} is
1, 1, 2, 4, 10, 26, 76, .... Thus, this situation adds (n− 1)(bn−2 − 1) to our count.

The third and final possibility is that n is part of a cycle which is ”paired” with another cycle.
This corresponds to the previously outlined scenario when (a1, b1), (ai, bi) are cycles of f and
(a1, ai) or (a1, bi) is a cycle of g, in which case (a1, bi) or (a1, ai), respectively, is a cycle of h.
If n is in such a pairing, there are

(
n−1
3

)
ways to select the other three values. Then, if f, g, h

are distinct when restricted to the set excluding these four values, there are 3! ways to assign
the cycles, contributing 6

(
n−1
3

)
an−4 cases. As before, if exactly two of f, g, h are the same, we

will have 3 ways to assign the cycles, so this case contributes 3 ·
(
n−1
3

)
(bn−4 − 1) to our tally.

Finally, if f, g, h are each the identity on the restriction to all but the four values of interest,
we get an additional

(
n−1
3

)
possibilities.

Hence,

an = an−1+3(n−1)·an−2+(n−1)·(bn−2−1)+6·
(
n− 1

3

)
·an−4+3·

(
n− 1

3

)
·(bn−4−1)+

(
n− 1

3

)
.

Simply plugging into the recurrence gives a4 = 4, a5 = 20, a6 = 165, and a7 = 875. It is
evident a8 is too large and the sequence is monotonically increasing, so our answer is 875 .
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