Algebra A Solutions

1．Let $f(x)=\frac{x+a}{x+b}$ satisfy $f(f(f(x)))=x$ for real numbers a, b ．If the maximum value of a is $\frac{p}{q}$ ， where p, q are relatively prime integers，what is $|p|+|q|$ ？

Proposed by：Henry Erdman

Answer： 7
Substituting in $f(x)$ for x in $f(x)$ twice yields that $f(f(f)))=\frac{(1+2 a+a b) x+\left(a+a^{2}+a b+a b^{2}\right)}{\left(1+a+b+b^{2}\right) x+\left(a+2 a b+b^{3}\right)}$ ． We note that the coefficient of x in the denominator must be zero，and thus we have that $a=-b^{2}-b-1$ ．This parabola opens down and has its vertex at $b=-\frac{1}{2}$ ，giving an upper limit on a of $-\frac{3}{4}$ ．We now need to verify that $(a, b)=\left(-\frac{3}{4},-\frac{1}{2}\right)$ satisfies the rest of the problem．We have $1+2 a+a b=1-\frac{3}{2}+\frac{3}{8}=-\frac{1}{8}$ as the coefficient of x in the numerator，$-\frac{3}{4}+\frac{9}{16}+\frac{3}{8}-\frac{3}{16}=0$ as the constant in the numerator，and $-\frac{3}{4}+\frac{3}{4}-\frac{1}{8}=-\frac{1}{8}$ as the constant in the denominator． Thus，we do indeed have a solution，and it is the greatest possible value of a ．So，our answer is $|-3|+|4|=7$ ．

2．Let C denote the curve $y^{2}=\frac{x(x+1)(2 x+1)}{6}$ ．The points $\left(\frac{1}{2}, a\right),(b, c)$ ，and $(24, d)$ lie on C and are collinear，and $a d<0$ ．Given that b, c are rational numbers，find $100 b^{2}+c^{2}$ ．

Proposed by：Sunay Joshi

Answer： 101
By plugging $x=\frac{1}{2}$ into the equation for C ，we find $a=\mp \frac{1}{2}$ ．Similarly，$d= \pm 70$ ．Since $a d<0$ ， there are only two possible pairs (a, d) ，namely $(a, d)=\left(-\frac{1}{2}, 70\right)$ or $\left(\frac{1}{2},-70\right)$ ．
Suppose $(a, d)=\left(-\frac{1}{2}, 70\right)$ ．Then the equation of the line through $\left(\frac{1}{2},-\frac{1}{2}\right)$ and $(24,70)$ is $y=3 x-2$ ．Plugging this into the equation for C ，we find $(3 x-2)^{2}=\frac{x(x+1)(2 x+1)}{6}$ ．Simplifying， we find $2 x^{3}-51 x^{2}+\ldots=0$ ．
At this point，instead of solving this equation explicitly，we use a trick．Since $\left(\frac{1}{2},-\frac{1}{2}\right)$ and $(24,-70)$ lie on this line，$x=\frac{1}{2}$ and $x=24$ are roots of this cubic．Thus，the remaining root $x=b$ must satisfy Vieta＇s Formula for the sum of roots！We get $b+\frac{1}{2}+24=\frac{51}{2}$ ，thus $b=1$ ． Plugging this into the equation of our line，we find $c=1$ ，hence $(b, c)=(1,1)$ ．
By the symmetry of C across the x axis，the other case yields $(b, c)=(1,-1)$ ．In either case， we find an answer of $100 \cdot 1^{2}+1^{2}=101$ ．
3．Let $\{x\}=x-\lfloor x\rfloor$ ．Consider a function f from the set $\{1,2, \ldots, 2020\}$ to the half－open interval $[0,1)$ ．Suppose that for all x, y ，there exists a z so that $\{f(x)+f(y)\}=f(z)$ ．We say that a pair of integers m, n is valid if $1 \leq m, n, \leq 2020$ and there exists a function f satisfying the above so $f(1)=\frac{m}{n}$ ．Determine the sum over all valid pairs m, n of $\frac{m}{n}$
Proposed by：Frank Lu
Answer： 1019595
We will consider the set of all possible images for f ，as this is the only restriction we are given on our function．
First，suppose that $f(x)$ was irrational for some value of x ．Then，it follows that $\{n * f(x)\}$ is in the image of f for all $n \in \mathbb{N}$ ．But this is impossible since our domain has only finitely many elements．Thus，it follows that our function can only be rational－valued．By repeating this argument，we also know that the denominator of $f(x)$ must be at most 2020.
We now claim that all such values are valid for $f(1)$ ．To see this，let $f(x)=\{x f(1)\}$ ．The fact that our condition is satisfied is clear．We thus find $\sum_{i=1}^{2020} \sum_{j=0}^{i-1} \frac{j}{i}=\sum_{i=1}^{2020} \frac{i-1}{2}=2019 * 505=$ 1019595 is our answer．
4. Let P be a 10-degree monic polynomial with roots $r_{1}, r_{2}, \ldots, r_{10} \neq 0$ and let Q be a 45degree monic polynomial with roots $\frac{1}{r_{i}}+\frac{1}{r_{j}}-\frac{1}{r_{i} r_{j}}$ where $i<j$ and $i, j \in\{1, \ldots, 10\}$. If $P(0)=Q(1)=2$, then $\log _{2}(|P(1)|)$ can be written as $\frac{a}{b}$ for relatively prime integers a, b. Find $a+b$.
Proposed by: Matthew Kendall
Answer: 19
We can factor Q as a product of its roots:

$$
Q(x)=\prod_{i<j}\left(x-\frac{1}{r_{i}}-\frac{1}{r_{j}}+\frac{1}{r_{i} r_{j}}\right)
$$

Then we see

$$
Q(1)=\prod_{i<j}\left(1-\frac{1}{r_{i}}-\frac{1}{r_{j}}+\frac{1}{r_{i} r_{j}}\right)=\prod_{i<j} \frac{1}{r_{i} r_{j}}\left(1-r_{i}\right)\left(1-r_{j}\right)=\frac{1}{\left(r_{1} r_{2} \cdots r_{10}\right)^{9}} P(1)^{9} .
$$

Hence $\frac{1}{2^{9}}|P(1)|^{9}=2$, so $|P(1)|=2^{\frac{10}{9}}$, giving an answer of 19 .
5. Suppose we have a sequence a_{1}, a_{2}, \ldots of positive real numbers so that for each positive integer n, we have that $\sum_{k=1}^{n} a_{k} a_{\lfloor\sqrt{k}\rfloor}=n^{2}$. Determine the first value of k so $a_{k}>100$.
Proposed by: Frank Lu
Answer: 1018
Note: On the original algebra test, we had forgotten to include the phrase "positive real numbers."
Notice that this relation becomes the equation that $a_{n}=\frac{2 n-1}{a_{\lfloor\sqrt{n}\rfloor}}$, by subtracting this for n and $n-1$. From here, to figure out when this is larger than 100 , we need to make some deductions about the rough behavior of this sequence. Notice here that, trying smaller values, we have that $a_{2}=3, a_{3}=5, a_{4}=7 / 3, a_{5}=3, a_{6}=11 / 3$.
First, notice that $a_{n}=\frac{2 n-1}{2\lfloor\sqrt{n}\rfloor-1} a_{\lfloor\sqrt{\lfloor\sqrt{n}\rfloor}\rfloor}>\sqrt{n} a_{\lfloor\sqrt{\lfloor\sqrt{n}\rfloor}\rfloor}$. Observe then that for $n=1295=$ $6^{4}-1$, notice that $a_{1295}>35 a_{5}=105$, so hence our maximal value is going to be at most 1295 . In particular, we see that $a_{\lfloor\sqrt{\lfloor\sqrt{n}\rfloor}\rfloor}$ for our maximal value is either going to be $a_{1}, a_{2}, a_{3}, a_{4}$, or a_{5}. But notice however that $\lfloor\sqrt{\lfloor\sqrt{n}\rfloor}\rfloor=5$; if it is 4 , notice that this is at most $\frac{7}{3} \frac{2 n-1}{2\lfloor\sqrt{n}\rfloor-1}<$ $\frac{7}{3} \frac{1250}{31}=\frac{8750}{93}<100$. And furthermore, if it is less than 4 , we see that we can bound this more crudely by $5 \frac{2 n-1}{2\lfloor\sqrt{n}\rfloor-1}<5 \frac{2(\lfloor\sqrt{n}\rfloor+1)^{2}-1}{2\lfloor\sqrt{n}\rfloor-1}=5 \frac{2\lfloor\sqrt{n}\rfloor^{2}+4\lfloor\sqrt{n}\rfloor+1}{2\lfloor\sqrt{n}\rfloor-1}=5\left(\lfloor\sqrt{n}\rfloor+5 / 2+\frac{7 / 2}{2\lfloor\sqrt{n}\rfloor-1}\right)$. On the one hand, we see that if $\lfloor\sqrt{n}\rfloor \leq 3$, this is at most $5(3+5 / 2+7 / 2)<45$. On the other hand, $\lfloor\sqrt{n}\rfloor \geq 4$, so this is at most $5(15+5 / 2+1 / 2)<90<100$.
In particular, we require then that for our minimal value for n, we have that $a_{n}=\frac{6 n-3}{2\lfloor\sqrt{n}\rfloor-1}$. On one hand, again we can use our bounds above to see that this is bounded above by $3\left(\lfloor\sqrt{n}\rfloor+5 / 2+\frac{7 / 2}{2\lfloor\sqrt{n}\rfloor-1}\right)$; we therefore need to have that $\lfloor\sqrt{n}\rfloor+5 / 2+\frac{7 / 2}{2\lfloor\sqrt{n}\rfloor-1}>33$. But with $\sqrt{n} \geq 25$ in this particular subcase, this means that we have that $\lfloor\sqrt{n}\rfloor+3>33$, or that $\lfloor\sqrt{n}\rfloor>30$. We start with this being 31; we then get that $a_{n}=\frac{6 n-3}{61}$. To be larger than 100 , this requires that $6 n>6103$, or that $n \geq 1018$.
6. Given integer n, let W_{n} be the set of complex numbers of the form $r e^{2 q i \pi}$, where q is a rational number so that $q n \in \mathbb{Z}$ and r is a real number. Suppose that p is a polynomial of degree ≥ 2 such that there exists a non-constant function $f: W_{n} \rightarrow \mathbb{C}$ so that $p(f(x)) p(f(y))=f(x y)$ for

$P \cup M \therefore C$

all $x, y \in W_{n}$. If p is the unique monic polynomial of lowest degree for which such an f exists for $n=65$, find $p(10)$.
Proposed by: Frank Lu
Answer: 100009
Note: On the original algebra test, we had forgotten the phrase " r is a real number."
Fix $f(1)$ and $p(x)$.
First, note that plugging in $x=y=1$ yields that $p(f(1))^{2}=f(1)$, and $y=1$ yields that $p(f(x)) p(f(1))=f(x)$.

Hence, we see that the image of f is a root of the polynomial $p(u) p(f(1))-u=0$, which in particular means that f has a finite image. Furthermore, we thus see that $p(f(x)) p(f(y)) p(f(1))^{2}=$ $f(x y) p(f(1))^{2}$, which means that, in fact, that $f(x) f(y)=f(1) f(x y) \forall x, y \in W_{n}$. If $f(1)$ is zero, then it follows that $\forall x \in W_{n}$ that $f(x)=0$, so we consider when $f(1) \neq 0$. Then, we see that, letting $g(x)=f(x) / f(1)$ that $g(x) g(y)=g(x y) \forall x, y \in W_{n}$.
Since the image of g is finite, if there exists a value of x so that $|g(x)| \neq 1,|g(x)| \neq 0$, then $g(x), g\left(x^{2}\right), \ldots$ are all distinct, contradiction. Furthermore, $g(x)=0$ for some $x \neq 0$ means that $g(x) g(y / x)=0=g(y) \forall y \in W_{n}$, so we take that we want $|g(x)|=1$ for all $x \in W_{n}$. By a similar logic, we see that $g(x)$ must be a root of unity, as again we will run into the issue where the image of g is infinite.
We see that if p is a prime not dividing n, then $g(x)$ can't ever be a p th root of unity, since otherwise we could take the p th root of x to get another root (raising all of the roots to the p th power yields a permutation of the roots). Thus, we see that the minimal possible value for the degree of our polynomial is 5 , which would then require it to have the 5 th roots of unity as roots.
Thus, we see that $p(u) p(f(1))-u=a u^{5}-a$ for some complex number a, meaning that $p(u)=\frac{a}{p(f(1))} u^{5}+u-\frac{a}{p(f(1))}$, which we can just write as $p(u)=u+c\left(u^{5}-1\right)$ for some complex constant c. By monic, we see that $p(x)=x^{5}+x-1$ yields that $p(10)=100009$.
7. Suppose that p is the unique monic polynomial of minimal degree such that its coefficients are rational numbers and one of its roots is $\sin \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}$. If $p(1)=\frac{a}{b}$, where a, b are relatively prime integers, find $|a+b|$.

Proposed by: Frank Lu

Answer: 57
We'll first find the polynomial with roots that are $\sin \frac{2 n \pi}{7}+\cos \frac{4 n \pi}{7}$, where n goes from 1 to 6 and are integers. Then, we'll show that this has minimal degree. Let this polynomial be q. First, notice that $\prod_{n=1}^{6}\left(x-\sin \frac{2 n \pi}{7}-\cos \frac{4 n \pi}{7}\right)=\prod_{n=1}^{6}\left(x+2 \sin ^{2} \frac{2 n \pi}{7}-\sin \frac{2 n \pi}{7}-1\right)$.
However, notice also that $q\left(\frac{-x^{2}-3 x}{2}\right)=\prod_{n=1}^{6}\left(\frac{-x^{2}-3 x}{2}+2 \sin ^{2} \frac{2 n \pi}{7}-\sin \frac{2 n \pi}{7}-1\right)=\prod_{n=1}^{6}(x+$ $\left.2 \sin \frac{2 n \pi}{7}+1\right)\left(-\frac{x}{2}+\sin \frac{2 n \pi}{7}-1\right)$. Suppose that h is the monic polynomial with roots being the $\sin \frac{2 n \pi}{7}$. Then, notice that this is equal to $64 h(-(x+1) / 2) h(x / 2+1)$.
We can explicitly find what h is, however. Notice that the equation giving that $\sin 7 \theta=0$, using DeMoivre's theorem, yields us the equation $-\sin ^{7} \theta+21 \sin ^{5} \theta \cos ^{2} \theta-35 \sin ^{3} \theta \cos ^{4} \theta+$ $7 \sin \theta \cos ^{6} \theta=0$, or that $-\sin ^{7} \theta+21 \sin ^{5} \theta\left(1-\sin ^{2} \theta\right)-35 \sin ^{3} \theta\left(1-\sin ^{2} \theta\right)^{2}+7 \sin \theta(1-$ $\left.\sin ^{2} \theta\right)^{3}=0$.
Expanding this out, we see that this is $-\sin ^{7} \theta+21 \sin ^{5} \theta-21 \sin ^{7} \theta-35 \sin ^{3} \theta+70 \sin ^{5} \theta-$ $35 \sin ^{7} \theta+7 \sin \theta-21 \sin ^{3} \theta+21 \sin ^{5} \theta-7 \sin ^{7} \theta=0$. Simplifying, this is $-64 \sin ^{7} \theta+112 \sin ^{5} \theta-$
$56 \sin ^{3} \theta+7 \sin \theta=0$. Notice that this has 7 roots, but one of these is just 0 ; this yields us that, in fact, $h(x)=x^{6}-\frac{7}{4} x^{4}+\frac{7}{8} x^{2}-\frac{7}{64}$. Furthermore, we see that this polynomial cannot be factored further in the rationals; we can check this using Eisenstein's criterion, for instance.
From here, we will show that, in fact, $q=p$. Once we have this, we see that $p(1)=q(1)=$ $q\left(\frac{-(-2)^{2}-3 *(-2)}{2}\right)=64 h(1 / 2) h(0)=64\left(\frac{1-7+7 \cdot 2-7}{64}\right)\left(\frac{-7}{64}\right)=-\frac{7}{64}$, which would yield our desired answer of 57 .
To show that p is q, we know that p has to divide q. But in fact, notice that q has to be at least degree 3 , since $p\left(-2 x^{2}+x+1\right)$ is a polynomial where $\sin \frac{2 \pi}{7}$ is a root, so is divisible by a sixth degree polynomial h. But notice that $-2 x^{2}+x+1+2 \sin ^{2} \frac{2 \pi}{7}-\sin \frac{2 \pi}{7}-1=$ $\left(x-\sin \frac{2 \pi}{7}\right)\left(-2 x-2 \sin \frac{2 \pi}{7}-1\right)$. However, notice that none of the other roots of $p\left(-2 x^{2}+x+1\right)$ are roots of h; otherwise we have that $-\sin \frac{2 n \pi}{7}-\frac{1}{2}=\sin \frac{2 m \pi}{7}$ for some integers m, n, or that $-\frac{1}{2}=\sin \frac{2 m \pi}{7}+\sin \frac{2 n \pi}{7}$. But we see that this doesn't occur; indeed, notice that both of these sines can't be negative (as $\sin \frac{\pi}{7}>\sin \frac{\pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}>\frac{1}{4}$), and if one is negative and one is positive, we require that either $\frac{1}{2}$ is $\sin \frac{3 \pi}{7}-\sin \frac{4}{7}$ or $\sin \frac{2 \pi}{7}-\sin \frac{\pi}{7}$.
None of these hold, though, as the second is $2 \cos \frac{3 \pi}{14} \sin \frac{\pi}{14}<\sqrt{3} \sin \frac{\pi}{12}=\frac{3 \sqrt{2}-\sqrt{6}}{2}$, and the other is $2 \cos \frac{2 \pi}{7} \sin \frac{\pi}{7}$. But if this is $1 / 2$, this means that $2 \sin \frac{\pi}{7}-4 \sin ^{3} \frac{\pi}{7}-1 / 2=0$, which is not possible as we deduced that the polynomial of minimal degree is degree 6 for $\sin \frac{\pi}{7}$.
This forces us to have $p=q$, as desired.
8. Let a_{n} be the number of unordered sets of three distinct bijections $f, g, h:\{1,2, \ldots, n\} \rightarrow$ $\{1,2, \ldots, n\}$ such that the composition of any two of the bijections equals the third. What is the largest value in the sequence a_{1}, a_{2}, \ldots which is less than $2021 ?$

Proposed by: Austen Mazenko

Answer: 875
First, $h:=f \circ g=g \circ f$, so $f(h(x))=f(g(f(x)))=g(x)$. Since g is bijective, this holds iff $g(f(g(f(x))))=h(h(x))=g(g(x)))$, so by analogous equations we find $f^{2}=g^{2}=h^{2}$. But, we also have $h(f(x))=g(x) \Longrightarrow g(f(f(x)))=g^{3}(x)=g(x) \Longrightarrow g^{2}(x) \equiv x$; analogous reasoning holds for the other two functions, so they must be involutions.
Suppose f 's cycles are $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$ (meaning $\left.f\left(a_{1}\right)=b_{1}, f\left(b_{1}\right)=a_{1}\right)$) while every other value is a fixed point of f. We will consider the number of possibilities for g (each of which fixes h). To start, note $f\left(g\left(a_{1}\right)\right)=g\left(f\left(a_{1}\right)\right) \Longrightarrow f\left(g\left(a_{1}\right)\right)=g\left(b_{1}\right)$. If $g\left(a_{1}\right)=a_{1}$, then $g\left(b_{1}\right)=b_{1}$ so a_{1}, b_{1} are fixed points of g and $\left(a_{1}, b_{1}\right)$ is a cycle in h. If $g\left(a_{1}\right)=b_{1}$, then $\left(a_{1}, b_{1}\right)$ is a cycle in g, and a_{1}, b_{1} are fixed points in h. If $g\left(a_{1}\right)=a_{i}$ or b_{i} for some $i>1$, then $g\left(b_{1}\right)=b_{i}$, so g has cycles $\left(a_{1}, a_{i}\right),\left(b_{1}, b_{i}\right)$. Furthermore, $f\left(g\left(a_{1}\right)\right)=b_{i},\left(a_{1}, b_{i}\right),\left(a_{i}, b_{1}\right)$ are cycles in h. Finally, $g\left(a_{1}\right)$ cannot be a fixed point of f since then $f\left(g\left(a_{1}\right)\right)=g\left(a_{1}\right)=g\left(b_{1}\right)$, contradicting bijectivity. Analogous reasoning holds for the other cycles of f.
The other possibility is to let x_{1} be a fixed point of f, and consider $f\left(g\left(x_{1}\right)\right)=g\left(f\left(x_{1}\right)\right)=g\left(x_{1}\right)$; hence, $g\left(x_{1}\right)$ is also a fixed point of f. Either $g\left(x_{1}\right)=x_{1}$, meaning $g\left(x_{1}\right)=x_{1}$ and $h\left(x_{1}\right)=x_{1}$, or $g\left(x_{1}\right)=x_{2}$ for some x_{2}, implying $h\left(x_{1}\right)=x_{2}$.
Combining the above information is sufficient to form a recursion for a_{n}. Evidently, $a_{0}=a_{1}=$ $a_{2}=a_{3}=0$. Now, for $n \geq 4$ there are a few possibilities. First, n could be a fixed point of f, g, and h, giving a_{n-1} possibilities. Second, n could be paired with some other value m such that (m, n) is a cycle in two of f, g, h and fixed by the third. There are $n-1$ ways to select $m, 3$ ways to determine which of f, g, h will fix m and n, and then a_{n-2} triplets to pick from. However, this situation is also possible when two of f, g, h are identical on $\{1,2, \ldots, n-1\} \backslash\{m\}$, and the third is the identity function on this set. WLOG $f \equiv g$ and h is the identity: if f fixes m, n while g does not, this will make f, g, h different on $\{1,2, \ldots, n\}$. The number of ways
for $f \equiv g$ is simply the number of involutions on $n-2$ elements, minus 1 for the case when f, g, h are all the identity bijection. Let b_{n} denote the number of involutions on n elements. Evidently $b_{0}=1, b_{1}=1$, and for $n \geq 2$ either n is fixed or it's transposed with one of the other $n-1$ terms, so $b_{n}=b_{n-1}+(n-1) b_{n-2}$. Hence, starting with index 0 , the sequence $\left\{b_{n}\right\}$ is $1,1,2,4,10,26,76, \ldots$ Thus, this situation adds $(n-1)\left(b_{n-2}-1\right)$ to our count.
The third and final possibility is that n is part of a cycle which is "paired" with another cycle. This corresponds to the previously outlined scenario when $\left(a_{1}, b_{1}\right),\left(a_{i}, b_{i}\right)$ are cycles of f and $\left(a_{1}, a_{i}\right)$ or $\left(a_{1}, b_{i}\right)$ is a cycle of g, in which case $\left(a_{1}, b_{i}\right)$ or $\left(a_{1}, a_{i}\right)$, respectively, is a cycle of h. If n is in such a pairing, there are $\binom{n-1}{3}$ ways to select the other three values. Then, if f, g, h are distinct when restricted to the set excluding these four values, there are 3 ! ways to assign the cycles, contributing $6\binom{n-1}{3} a_{n-4}$ cases. As before, if exactly two of f, g, h are the same, we will have 3 ways to assign the cycles, so this case contributes $3 \cdot\binom{n-1}{3}\left(b_{n-4}-1\right)$ to our tally. Finally, if f, g, h are each the identity on the restriction to all but the four values of interest, we get an additional $\binom{n-1}{3}$ possibilities.
Hence,
$a_{n}=a_{n-1}+3(n-1) \cdot a_{n-2}+(n-1) \cdot\left(b_{n-2}-1\right)+6 \cdot\binom{n-1}{3} \cdot a_{n-4}+3 \cdot\binom{n-1}{3} \cdot\left(b_{n-4}-1\right)+\binom{n-1}{3}$.
Simply plugging into the recurrence gives $a_{4}=4, a_{5}=20, a_{6}=165$, and $a_{7}=875$. It is evident a_{8} is too large and the sequence is monotonically increasing, so our answer is 875 .

