Algebra B

1. The function $f(x)=x^{2}+(2 a+3) x+\left(a^{2}+1\right)$ only has real zeroes. Suppose the smallest possible value of a can be written in the form $\frac{p}{q}$, where p, q are relatively prime integers. Find $|p|+|q|$.
2. Princeton has an endowment of 5 million dollars and wants to invest it into improving campus life. The university has three options: it can either invest in improving the dorms, campus parties or dining hall food quality. If they invest a million dollars in the dorms, the students will spend an additional $5 a$ hours per week studying. If the university invests b million dollars in better food, the students will spend an additional $3 b$ hours per week studying. Finally, if the c million dollars are invested in parties, students will be more relaxed and spend $11 c-c^{2}$ more hours per week studying. The university wants to invest its 5 million dollars so that the students get as many additional hours of studying as possible. What is the maximal amount that students get to study?
3. Let $f(x)=\frac{x+a}{x+b}$ satisfy $f(f(f(x)))=x$ for real numbers a, b. If the maximum value of a is $\frac{p}{q}$, where p, q are relatively prime integers, what is $|p|+|q|$?
4. Let C denote the curve $y^{2}=\frac{x(x+1)(2 x+1)}{6}$. The points $\left(\frac{1}{2}, a\right),(b, c)$, and $(24, d)$ lie on C and are collinear, and $a d<0$. Given that b, c are rational numbers, find $100 b^{2}+c^{2}$.
5. Let $\{x\}=x-\lfloor x\rfloor$. Consider a function f from the set $\{1,2, \ldots, 2020\}$ to the half-open interval $[0,1)$. Suppose that for all x, y, there exists a z so that $\{f(x)+f(y)\}=f(z)$. We say that a pair of integers m, n is valid if $1 \leq m, n \leq 2020$ and there exists a function f satisfying the above so $f(1)=\frac{m}{n}$. Determine the sum over all valid pairs m, n of $\frac{m}{n}$.
6. Let P be a 10 -degree monic polynomial with roots $r_{1}, r_{2}, \ldots, r_{10} \neq 0$ and let Q be a 45degree monic polynomial with roots $\frac{1}{r_{i}}+\frac{1}{r_{j}}-\frac{1}{r_{i} r_{j}}$ where $i<j$ and $i, j \in\{1, \ldots, 10\}$. If $P(0)=Q(1)=2$, then $\log _{2}(|P(1)|)$ can be written as $\frac{a}{b}$ for relatively prime integers a, b. Find $a+b$.
7. Suppose we have a sequence a_{1}, a_{2}, \ldots of positive real numbers so that for each positive integer n, we have that $\sum_{k=1}^{n} a_{k} a_{\lfloor\sqrt{k}\rfloor}=n^{2}$. Determine the first value of k so $a_{k}>100$.
8. Given integer n, let W_{n} be the set of complex numbers of the form $r e^{2 q i \pi}$, where q is a rational number so that $q n \in \mathbb{Z}$ and r is a real number. Suppose that p is a polynomial of degree ≥ 2 such that there exists a non-constant function $f: W_{n} \rightarrow \mathbb{C}$ so that $p(f(x)) p(f(y))=f(x y)$ for all $x, y \in W_{n}$. If p is the unique monic polynomial of lowest degree for which such an f exists for $n=65$, find $p(10)$.
