Algebra B Solutions

1. The function $f(x)=x^{2}+(2 a+3) x+\left(a^{2}+1\right)$ only has real zeroes. Suppose the smallest possible value of a can be written in the form $\frac{p}{q}$, where p, q are relatively prime integers. Find $|p|+|q|$.
Proposed by: Frank Lu
Answer: 17
Notice that for $f(x)$ to have real zeroes, the discriminant needs to be nonnegative. This requires, in turn, that $(2 a+3)^{2}-4\left(a^{2}+1\right)=4 a^{2}+12 a+9-4 a^{2}-4=12 a+5$. But this requires, that $a \geq \frac{-5}{12}$. Our answer is hence 17 .
2. Princeton has an endowment of 5 million dollars and wants to invest it into improving campus life. The university has three options: it can either invest in improving the dorms, campus parties or dining hall food quality. If they invest a million dollars in the dorms, the students will spend an additional $5 a$ hours per week studying. If the university invests b million dollars in better food, the students will spend an additional $3 b$ hours per week studying. Finally, if the c million dollars are invested in parties, students will be more relaxed and spend $11 c-c^{2}$ more hours per week studying. The university wants to invest its 5 million dollars so that the students get as many additional hours of studying as possible. What is the maximal amount that students get to study?

Proposed by: Aleksa Milojevic

Answer: 34
Note: On the original algebra test, we had forgotten the "per week" on the last quantity of hours.
We have to maximize $5 a+3 b+11 c-c^{2}$ when $a+b+c=5$. It is clear that $b=0$ as it is always better to invest in a than in b. We know $5 a+11 c-c^{2}=5(a+c)+\left(6 c-c^{2}\right)=$ $5 \cdot 5+9-(c-3)^{2}=34-(c-3)^{2}$. The optimal choice is $a=2, b=0, c=3$; our answer is 34 .
3. Let $f(x)=\frac{x+a}{x+b}$ satisfy $f(f(f(x)))=x$ for real numbers a, b. If the maximum value of a is $\frac{p}{q}$, where p, q are relatively prime integers, what is $|p|+|q|$?
Proposed by: Henry Erdman
Answer: 7
Substituting in $f(x)$ for x in $f(x)$ twice yields that $f(f(f(x)))=\frac{(1+2 a+a b) x+\left(a+a^{2}+a b+a b^{2}\right)}{\left(1+a+b+b^{2}\right) x+\left(a+2 a b+b^{3}\right)}$. We note that the coefficient of x in the denominator must be zero, and thus we have that $a=-b^{2}-b-1$. This parabola opens down and has its vertex at $b=-\frac{1}{2}$, giving an upper limit on a of $-\frac{3}{4}$. We now need to verify that $(a, b)=\left(-\frac{3}{4},-\frac{1}{2}\right)$ satisfies the rest of the problem. We have $1+2 a+a b=1-\frac{3}{2}+\frac{3}{8}=-\frac{1}{8}$ as the coefficient of x in the numerator, $-\frac{3}{4}+\frac{9}{16}+\frac{3}{8}-\frac{3}{16}=0$ as the constant in the numerator, and $-\frac{3}{4}+\frac{3}{4}-\frac{1}{8}=-\frac{1}{8}$ as the constant in the denominator. Thus, we do indeed have a solution, and it is the greatest possible value of a. So, our answer is $|-3|+|4|=7$.
4. Let C denote the curve $y^{2}=\frac{x(x+1)(2 x+1)}{6}$. The points $\left(\frac{1}{2}, a\right),(b, c)$, and $(24, d)$ lie on C and are collinear, and $a d<0$. Given that b, c are rational numbers, find $100 b^{2}+c^{2}$.

Proposed by: Sunay Joshi

Answer: 101

P U M ㄷC

By plugging $x=\frac{1}{2}$ into the equation for C, we find $a=\mp \frac{1}{2}$. Similarly, $d= \pm 70$. By geometric intuition (?), there are only two possible pairs (a, d), namely $(a, d)=\left(-\frac{1}{2}, 70\right)$ or $\left(\frac{1}{2},-70\right)$.
Suppose $(a, d)=\left(-\frac{1}{2}, 70\right)$. Then the equation of the line through $\left(\frac{1}{2},-\frac{1}{2}\right)$ and $(24,70)$ is $y=3 x-2$. Plugging this into the equation for C, we find $(3 x-2)^{2}=\frac{x(x+1)(2 x+1)}{6}$. Simplifying, we find $2 x^{3}-51 x^{2}+\ldots=0$.

At this point, instead of solving this equation explicitly, we use a trick. Since $\left(\frac{1}{2},-\frac{1}{2}\right)$ and $(24,-70)$ lie on this line, $x=\frac{1}{2}$ and $x=24$ are roots of this cubic. Thus, the remaining root $x=b$ must satisfy Vieta's Formula for the sum of roots! We get $b+\frac{1}{2}+24=\frac{51}{2}$, thus $b=1$. Plugging this into the equation of our line, we find $c=1$, hence $(b, c)=(1,1)$.
By the symmetry of C across the x axis, the other case yields $(b, c)=(1,-1)$. In either case, we find an answer of $100 \cdot 1^{2}+1^{2}=101$.
5. Let $\{x\}=x-\lfloor x\rfloor$. Consider a function f from the set $\{1,2, \ldots, 2020\}$ to the half-open interval $[0,1)$. Suppose that for all x, y, there exists a z so that $\{f(x)+f(y)\}=f(z)$. We say that a pair of integers m, n is valid if $1 \leq m, n, \leq 2020$ and there exists a function f satisfying the above so $f(1)=\frac{m}{n}$. Determine the sum over all valid pairs m, n of $\frac{m}{n}$
Proposed by: Frank Lu
Answer: 1019595
We will consider the set of all possible images for f, as this is the only restriction we are given on our function.
First, suppose that $f(x)$ was irrational for some value of x. Then, it follows that $\{n * f(x)\}$ is in the image of f for all $n \in \mathbb{N}$. But this is impossible since our domain has only finitely many elements. Thus, it follows that our function can only be rational-valued. By repeating this argument, we also know that the denominator of $f(x)$ must be at most 2020.

We now claim that all such values are valid for $f(1)$. To see this, let $f(x)=\{x f(1)\}$. The fact that our condition is satisfied is clear. We thus find $\sum_{i=1}^{2020} \sum_{j=0}^{i-1} \frac{j}{i}=\sum_{i=1}^{2020} \frac{i-1}{2}=2019 * 505=$ 1019595 is our answer.
6. Let P be a 10 -degree monic polynomial with roots $r_{1}, r_{2}, \ldots, r_{10} \neq 0$ and let Q be a 45degree monic polynomial with roots $\frac{1}{r_{i}}+\frac{1}{r_{j}}-\frac{1}{r_{i} r_{j}}$ where $i<j$ and $i, j \in\{1, \ldots, 10\}$. If $P(0)=Q(1)=2$, then $\log _{2}(|P(1)|)$ can be written as $\frac{a}{b}$ for relatively prime integers a, b. Find $a+b$.

Proposed by: Matthew Kendall

Answer: 19
We can factor Q as a product of its roots:

$$
Q(x)=\prod_{i<j}\left(x-\frac{1}{r_{i}}-\frac{1}{r_{j}}+\frac{1}{r_{i} r_{j}}\right) .
$$

Then we see

$$
Q(1)=\prod_{i<j}\left(1-\frac{1}{r_{i}}-\frac{1}{r_{j}}+\frac{1}{r_{i} r_{j}}\right)=\prod_{i<j} \frac{1}{r_{i} r_{j}}\left(1-r_{i}\right)\left(1-r_{j}\right)=\frac{1}{\left(r_{1} r_{2} \cdots r_{10}\right)^{9}} P(1)^{9} .
$$

Hence $\frac{1}{2^{9}}|P(1)|^{9}=2$, so $|P(1)|=2^{\frac{10}{9}}$, giving an answer of 19 .
7. Suppose we have a sequence a_{1}, a_{2}, \ldots of positive real numbers so that for each positive integer n, we have that $\sum_{k=1}^{n} a_{k} a_{\lfloor\sqrt{k}\rfloor}=n^{2}$. Determine the first value of k so $a_{k}>100$.
Proposed by: Frank Lu
Answer: 1018
Note: On the original algebra test, we had forgotten to include the phrase "positive real numbers."
Notice that this relation becomes the equation that $a_{n}=\frac{2 n-1}{a_{\lfloor\sqrt{n}\rfloor}}$, by subtracting this for n and $n-1$. From here, to figure out when this is larger than 100 , we need to make some deductions about the rough behavior of this sequence. Notice here that, trying smaller values, we have that $a_{2}=3, a_{3}=5, a_{4}=7 / 3, a_{5}=3, a_{6}=11 / 3$.
First, notice that $a_{n}=\frac{2 n-1}{\lfloor\lfloor\sqrt{n}\rfloor-1} a_{\lfloor\sqrt{\lfloor\sqrt{n}\rfloor}\rfloor}>\sqrt{n} a_{\lfloor\sqrt{\lfloor\sqrt{n}\rfloor}\rfloor}$. Observe then that for $n=1295=$ $6^{4}-1$, notice that $a_{1295}>35 a_{5}=105$, so hence our maximal value is going to be at most 1295 . In particular, we see that $a_{\lfloor\sqrt{\lfloor\sqrt{n}\rfloor}\rfloor}$ for our maximal value is either going to be $a_{1}, a_{2}, a_{3}, a_{4}$, or a_{5}. But notice however that $\lfloor\sqrt{\lfloor\sqrt{n}\rfloor}\rfloor=5$; if it is 4 , notice that this is at most $\frac{7}{3} \frac{2 n-1}{2\lfloor\sqrt{n}\rfloor-1}<$ $\frac{7}{3} \frac{1250}{31}=\frac{8750}{93}<100$. And furthermore, if it is less than 4 , we see that we can bound this more crudely by $5 \frac{2 n-1}{2\lfloor\sqrt{n}\rfloor-1}<5 \frac{2(\lfloor\sqrt{n}\rfloor+1)^{2}-1}{2\lfloor\sqrt{n}\rfloor-1}=5 \frac{2\lfloor\sqrt{n}\rfloor^{2}+4\lfloor\sqrt{n}\rfloor+1}{2\lfloor\sqrt{n}\rfloor-1}=5\left(\lfloor\sqrt{n}\rfloor+5 / 2+\frac{7 / 2}{2\lfloor\sqrt{n}\rfloor-1}\right)$. On the one hand, we see that if $\lfloor\sqrt{n}\rfloor \leq 3$, this is at most $5(3+5 / 2+7 / 2)<45$. On the other hand, $\lfloor\sqrt{n}\rfloor \geq 4$, so this is at most $5(15+5 / 2+1 / 2)<90<100$.
In particular, we require then that for our minimal value for n, we have that $a_{n}=\frac{6 n-3}{2\lfloor\sqrt{n}\rfloor-1}$. On one hand, again we can use our bounds above to see that this is bounded above by $3\left(\lfloor\sqrt{n}\rfloor+5 / 2+\frac{7 / 2}{2\lfloor\sqrt{n}\rfloor-1}\right)$; we therefore need to have that $\lfloor\sqrt{n}\rfloor+5 / 2+\frac{7 / 2}{2\lfloor\sqrt{n}\rfloor-1}>33$. But with $\sqrt{n} \geq 25$ in this particular subcase, this means that we have that $\lfloor\sqrt{n}\rfloor+3>33$, or that $\lfloor\sqrt{n}\rfloor>30$. We start with this being 31; we then get that $a_{n}=\frac{6 n-3}{61}$. To be larger than 100, this requires that $6 n>6103$, or that $n \geq 1018$.
8. Given integer n, let W_{n} be the set of complex numbers of the form $r e^{2 q i \pi}$, where q is a rational number so that $q n \in \mathbb{Z}$ and r is a real number. Suppose that p is a polynomial of degree ≥ 2 such that there exists a non-constant function $f: W_{n} \rightarrow \mathbb{C}$ so that $p(f(x)) p(f(y))=f(x y)$ for all $x, y \in W_{n}$. If p is the unique monic polynomial of lowest degree for which such an f exists for $n=65$, find $p(10)$.
Proposed by: Frank Lu
Answer: 100009
Note: On the original algebra test, we had forgotten the phrase " r is a real number."
Fix $f(1)$ and $p(x)$.
First, note that plugging in $x=y=1$ yields that $p(f(1))^{2}=f(1)$, and $y=1$ yields that $p(f(x)) p(f(1))=f(x)$.
Hence, we see that the image of f is a root of the polynomial $p(u) p(f(1))-u=0$, which in particular means that f has a finite image. Furthermore, we thus see that $p(f(x)) p(f(y)) p(f(1))^{2}=$ $f(x y) p(f(1))^{2}$, which means that, in fact, that $f(x) f(y)=f(1) f(x y) \forall x, y \in W_{n}$. If $f(1)$ is zero, then it follows that $\forall x \in W_{n}$ that $f(x)=0$, so we consider when $f(1) \neq 0$. Then, we see that, letting $g(x)=f(x) / f(1)$ that $g(x) g(y)=g(x y) \forall x, y \in W_{n}$.
Since the image of g is finite, if there exists a value of x so that $|g(x)| \neq 1,|g(x)| \neq 0$, then $g(x), g\left(x^{2}\right), \ldots$ are all distinct, contradiction. Furthermore, $g(x)=0$ for some $x \neq 0$ means that $g(x) g(y / x)=0=g(y) \forall y \in W_{n}$, so we take that we want $|g(x)|=1$ for all $x \in W_{n}$. By
a similar logic, we see that $g(x)$ must be a root of unity, as again we will run into the issue where the image of g is infinite.
We see that if p is a prime not dividing n, then $g(x)$ can't ever be a p th root of unity, since otherwise we could take the p th root of x to get another root (raising all of the roots to the p th power yields a permutation of the roots). Thus, we see that the minimal possible value for the degree of our polynomial is 5 , which would then require it to have the 5 th roots of unity as roots.
Thus, we see that $p(u) p(f(1))-u=a u^{5}-a$ for some complex number a, meaning that $p(u)=\frac{a}{p(f(1))} u^{5}+u-\frac{a}{p(f(1))}$, which we can just write as $p(u)=u+c\left(u^{5}-1\right)$ for some complex constant c. By monic, we see that $p(x)=x^{5}+x-1$ yields that $p(10)=100009$.

