Geometry A

1. Let γ_{1} and γ_{2} be circles centered at O and P respectively, and externally tangent to each other at point Q. Draw point D on γ_{1} and point E on γ_{2} such that line $D E$ is tangent to both circles. If the length $O Q=1$ and the area of the quadrilateral $O D E P$ is 520 , then what is the value of length $P Q$?
2. Hexagon $A B C D E F$ has an inscribed circle Ω that is tangent to each of its sides. If $A B=12$, $\angle F A B=120^{\circ}$, and $\angle A B C=150^{\circ}$, and if the radius of Ω can be written as $m+\sqrt{n}$ for positive integers m, n, find $m+n$.
3. Let $A B C D$ be a cyclic quadrilateral with circumcenter O and radius 10 . Let sides $A B, B C, C D$, and $D A$ have midpoints M, N, P, and Q, respectively. If $M P=N Q$ and $O M+O P=16$, then what is the area of triangle $\triangle O A B$?
4. Let C be a circle centered at point O, and let P be a point in the interior of C. Let Q be a point on the circumference of C such that $P Q \perp O P$, and let D be the circle with diameter $P Q$. Consider a circle tangent to C whose circumference passes through point P. Let the curve Γ be the locus of the centers of all such circles. If the area enclosed by Γ is $1 / 100$ the area of C, then what is the ratio of the area of C to the area of D ?
5. Triangle $A B C$ is so that $A B=15, B C=22$, and $A C=20$. Let D, E, F lie on $B C, A C$, and $A B$, respectively, so $A D, B E, C F$ all contain a point K. Let L be the second intersection of the circumcircles of $B F K$ and $C E K$. Suppose that $\frac{A K}{K D}=\frac{11}{7}$, and $B D=6$. If $K L^{2}=\frac{a}{b}$, where a, b are relatively prime integers, find $a+b$.
6. Triangle $A B C$ has side lengths 13,14 , and 15 . Let E be the ellipse that encloses the smallest area which passes through A, B, and C. The area of E is of the form $\frac{a \sqrt{b} \pi}{c}$, where a and c are coprime and b has no square factors. Find $a+b+c$.
7. Let $A B C$ be a triangle with sides $A B=34, B C=15, A C=35$ and let Γ be the circle of smallest possible radius passing through A tangent to $B C$. Let the second intersections of Γ and sides $A B, A C$ be the points X, Y. Let the ray $X Y$ intersect the circumcircle of the triangle $A B C$ at Z. If $A Z=\frac{p}{q}$ for relatively prime integers p and q, find $p+q$.
8. $A_{1} A_{2} A_{3} A_{4}$ is a cyclic quadrilateral inscribed in circle Ω, with side lengths $A_{1} A_{2}=28, A_{2} A_{3}=$ $12 \sqrt{3}, A_{3} A_{4}=28 \sqrt{3}$, and $A_{4} A_{1}=8$. Let X be the intersection of $A_{1} A_{3}, A_{2} A_{4}$. Now, for $i=1,2,3,4$, let ω_{i} be the circle tangent to segments $A_{i} X, A_{i+1} X$, and Ω, where we take indices cyclically $(\bmod 4)$. Furthermore, for each i, say ω_{i} is tangent to $A_{1} A_{3}$ at $X_{i}, A_{2} A_{4}$ at Y_{i}, and Ω at T_{i}. Let P_{1} be the intersection of $T_{1} X_{1}$ and $T_{2} X_{2}$, and P_{3} the intersection of $T_{3} X_{3}$ and $T_{4} X_{4}$. Let P_{2} be the intersection of $T_{2} Y_{2}$ and $T_{3} Y_{3}$, and P_{4} the intersection of $T_{1} Y_{1}$ and $T_{4} Y_{4}$. Find the area of quadrilateral $P_{1} P_{2} P_{3} P_{4}$.
