PUM.C

Geometry A

- 1. Let γ_1 and γ_2 be circles centered at O and P respectively, and externally tangent to each other at point Q. Draw point D on γ_1 and point E on γ_2 such that line DE is tangent to both circles. If the length OQ = 1 and the area of the quadrilateral ODEP is 520, then what is the value of length PQ?
- 2. Hexagon ABCDEF has an inscribed circle Ω that is tangent to each of its sides. If AB = 12, $\angle FAB = 120^{\circ}$, and $\angle ABC = 150^{\circ}$, and if the radius of Ω can be written as $m + \sqrt{n}$ for positive integers m, n, find m + n.
- 3. Let ABCD be a cyclic quadrilateral with circumcenter O and radius 10. Let sides AB, BC, CD, and DA have midpoints M, N, P, and Q, respectively. If MP = NQ and OM + OP = 16, then what is the area of triangle $\triangle OAB$?
- 4. Let C be a circle centered at point O, and let P be a point in the interior of C. Let Q be a point on the circumference of C such that $PQ \perp OP$, and let D be the circle with diameter PQ. Consider a circle tangent to C whose circumference passes through point P. Let the curve Γ be the locus of the centers of all such circles. If the area enclosed by Γ is 1/100 the area of C, then what is the ratio of the area of C to the area of D?
- 5. Triangle *ABC* is so that AB = 15, BC = 22, and AC = 20. Let D, E, F lie on BC, AC, and AB, respectively, so AD, BE, CF all contain a point K. Let L be the second intersection of the circumcircles of BFK and CEK. Suppose that $\frac{AK}{KD} = \frac{11}{7}$, and BD = 6. If $KL^2 = \frac{a}{b}$, where a, b are relatively prime integers, find a + b.
- 6. Triangle ABC has side lengths 13, 14, and 15. Let E be the ellipse that encloses the smallest area which passes through A, B, and C. The area of E is of the form $\frac{a\sqrt{b\pi}}{c}$, where a and c are coprime and b has no square factors. Find a + b + c.
- 7. Let ABC be a triangle with sides AB = 34, BC = 15, AC = 35 and let Γ be the circle of smallest possible radius passing through A tangent to BC. Let the second intersections of Γ and sides AB, AC be the points X, Y. Let the ray XY intersect the circumcircle of the triangle ABC at Z. If $AZ = \frac{p}{q}$ for relatively prime integers p and q, find p + q.
- 8. $A_1A_2A_3A_4$ is a cyclic quadrilateral inscribed in circle Ω , with side lengths $A_1A_2 = 28$, $A_2A_3 = 12\sqrt{3}$, $A_3A_4 = 28\sqrt{3}$, and $A_4A_1 = 8$. Let X be the intersection of A_1A_3 , A_2A_4 . Now, for i = 1, 2, 3, 4, let ω_i be the circle tangent to segments $A_iX, A_{i+1}X$, and Ω , where we take indices cyclically (mod 4). Furthermore, for each i, say ω_i is tangent to A_1A_3 at X_i, A_2A_4 at Y_i , and Ω at T_i . Let P_1 be the intersection of T_1X_1 and T_2X_2 , and P_3 the intersection of T_3X_3 and T_4X_4 . Let P_2 be the intersection of T_2Y_2 and T_3Y_3 , and P_4 the intersection of T_1Y_1 and T_4Y_4 . Find the area of quadrilateral $P_1P_2P_3P_4$.