
Individual Finals B

1. Let a1, . . . , a2020 be a sequence of real numbers such that a1 = 2−2019, and a2n−1an = an−an−1.

Prove that a2020 <
1

22019 − 1
.

Proof. We will prove by induction that 0 < ai ≤ 2−2020+i for i = 1, . . . , 2020. The base follows
from the definition of a1.

Suppose the statement holds for i. Then ai+1 =
ai

1− a2i
, from the recurrence equation. By the

inductive hypothesis, first we see that ai+1 > 0. Furthermore,
ai

1− a2i
≤ 2−2020+i 1

1− a2i
. It is

enough to prove that
1

1− a2i
< 2 which follows from ai < 2−2020+i.

From the recurrence equation, we get that an−1 =
1

an−1
− 1

an
. Then

1

a1
− 1

a2020
=
∑2019

i=1 ai ≤∑2019
i=1 2−2020+i < 1. Then 22019 − 1

a2020
< 1, from which it follows that a2020 <

1

22019 − 1
.

Remark: This technique can be repeated to get an even better estimate by using a similar

estimate for ai <
1

22019 − 1
, yielding

∑2019
i=1 ai <

2019

22019 − 1
.

Proposed by Aleksa Milojević and Igor Medvedev.

2. Helen has a wooden rectangle of unknown dimensions, a straightedge, and a pencil (no com-
pass). Is it possible for her to construct a line segment on the rectangle connecting the mid-
points of two opposite sides, where she cannot draw any lines or points outside the rectangle?

Note: Helen is allowed to draw lines between two points she has already marked, and mark
the intersection of any two lines she has already drawn, if the intersection lies on the rectangle.
Further, Helen is allowed to mark arbitrary points either on the rectangle or on a segment she
has previously drawn. Assume that only the four vertices of the rectangle have been marked
prior to the beginning of this process.

Solution: We will show that we can construct the midpoint of any edge of the rectangle. First,
we draw the diagonals, and mark their intersection E.

Then, we pick an arbitrary point X on AE, not being A or E. Then, we intersect DX with AB
to get Y and EY with BX to get Z. The claim is that the pencil of lines (AB,AE;AZ,AD)
are harmonic. To see why, it suffices to let T be the intersection of AZ and BE. From Ceva’s

theorem in triangle ABE we have that
−→
BT−→
TE
·
−−→
EX−−→
XA
·
−−→
AY−−→
Y B

= 1. Similarly, Menelaus’ theorem in

triangle ABE gives
−−→
BD−−→
DE
·
−−→
EX−−→
XA
·
−−→
AY−−→
Y B

= −1. These equations imply
−−→
BD−−→
DE

= −
−→
BT−→
TE

, which gives the

above claim.

This means that the line AZ passes through the midpoint of BC (because AD||BC, and
projecting the harmonic pencil (AB,AE;AD,AZ) onto BC gives respectively the B, C, the
point at infinity and the midpoint of BC). Other midpoints can be constructed similarly.

Proposed by Daniel Carter.

3. Let n be a positive integer, and let F be a family of subsets of {1, 2, · · · , 2n} such that for
any non-empty A ∈ F there exists B ∈ F so that |A| = |B|+ 1 and B ⊂ A. Suppose that F
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contains all (2n − 1)-element subsets of {1, 2, · · · , 2n}. Determine the minimal possible value
of |F|.
Solution: The answer is n · 2n + 1. First we will provide a construction for this answer,
inductively. For n = 1, we can obviously construct F = {∅, {1}, {2}}, which has a cardinality
of 3 = 1 · 21 + 1. For larger n, we let F1 be the solution for n− 1 and every set also contains
the numbers {2n−1 + 1, 2n−1 + 2, · · · , 2n} and let F2 be the family symmetrical to F1 in the
sense that if we will replace every element x with 2n + 1− x. Now let

F = F1 ∪ F2∪{
∅, {1}, {1, 2}, · · · , {1, · · · , 2n−1 − 1}, {2n−1 + 1}, {2n−1 + 1, 2n−1 + 2}, · · · , {2n−1 + 1, · · · , 2n − 1}

}
.

By the inductive hypothesis, F obviously satisfies all the required conditions. Also

|F| = 2 · |F1|+ 2n − 1 =

2 · ((n− 1) · 2n−1 + 1) + 2n − 1 = (n− 1) · 2n + 2n + 1 = n · 2n + 1.

Now we will prove this number is minimal. Let Fm be a family that satisfies the problem
condition, which has the minimal possible number of sets. Obviously this family will contain
the empty set. We shall construct a rooted tree T in the following way: the vertices will
represent elements of Fm, and the parent of the vertex that corresponds to the set A ∈ Fm

will be a vertex that corresponds to a B ∈ Fm so that |A| = |B| + 1 and B ⊂ A (there can
be multiple such B, but only a single, arbitrary one will be chosen as the parent). As every
vertex except the one that corresponds to the empty set have a parent, T is rooted in that
vertex. Now, since we have assumed the minimality of Fm, we can see that the only leaves
in this tree are the vertices that correspond to the (2n − 1)-element sets. Let the height of
a vertex be the vertex-wise distance from it to the nearest leaf, and deonte the height of the
vertex corresponding to A as hA. Let the power of a vertex denote the number of leaves in
its subtree, and denote the power of the vertex corresponding to A as xA. Now observe the
following:

Lemma 1: hA ≥ xA for any A ∈ Fm.

Notice that hA = 2n − |A|, so there are exactly hA numbers from {1, 2, · · · , 2n} that are
not in A. We notice that if if the vertex corresponding to C in the subtree of the vertex
corresponding to A, then A ⊂ C. This means that the only leaves that can be in this subtree
are the ones whose missing element of the corresponding set isn’t in A. From this we derive
the desired inequality.

Lemma 2: For any A ∈ Fm let’s denote the number of vertices in the subtree of its cor-
responding vertex with pA. Then we have

pA ≥ xA log2 xA + hA − xA + 1.

We will prove this lemma by induction on the value of xA +hA. The base case of xA +hA = 2
only holds when xA = 1 and hA = 1, meaning that A corresponds to a leaf, for which the
lemma is obviously true. Now for the inductive step we lets denote the sons of set A by
B1, B2, · · · , Bk. Obviously, we have hBk

= hA − 1 and
∑k

i=1 xBk
= xA. In this case we see

pA = 1+

k∑
i=1

pBk
≥

k∑
i=1

xBk
log2 xBk

+

k∑
i=1

hBk
−

k∑
i=1

xBk
+k+1 ≥

k∑
i=1

xBk
log2 xBk

+k·hA−xA+1.
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Now since f(x) = x lnx is convex, by Jensen’s inequality we obtain

pA ≥ k·
∑k

i=1 xBi

k
log2

(∑k
i=1 xBi

k

)
+hA−xA+1+(k−1)hA ≥ xA log2

(xA

k

)
+(k−1)xA+hA−xA+1.

Since xA(log2
xA

k + (k − 1)) = xA log2(xA
2k−1

k ) ≥ xA log2(xA), because 2k−1 = (1 + 1)k−1 ≥
1 + k− 1 = k by Bernoulli’s inequality (also provable by induction). With this we have proven
the lemma.

Now applying Lemma 2 to the root vertex we obtain that the amount of vertices is at least

p∅ ≥ 2n · n + 2n − 2n + 1 = n · 2n + 1.

Proposed by Pavle Martinović.
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