Individual Finals B

1. Find all pairs of natural numbers (n, k) with the following property:

Given a $k \times k$ array of cells, such that every cell contains one integer, there always exists a path from the left to the right edges such that the sum of the numbers on the path is a multiple of n.

Note: A path from the left to the right edge is a sequence of cells of the array $a_{1}, a_{2}, \ldots, a_{m}$ so that a_{1} is a cell of the leftmost column, a_{m} is the cell of the rightmost column, and a_{i}, a_{i+1} share an edge for all $i=1,2, \ldots, m-1$.
2. Prove that there is a positive integer M for which the following statement holds:

For all prime numbers p, there is an integer n for which $\sqrt{p} \leq n \leq M \sqrt{p}$ and $p \bmod n \leq \frac{n}{2020}$. Note: Here, $p \bmod n$ denotes the unique integer $r \in\{0,1, \ldots, n-1\}$ for which $n \mid p-r$. In other words, $p \bmod n$ is the residue of p upon division by n.
3. Let $A B C$ be a triangle and let the points D, E be on the rays $A B, A C$ such that $B C E D$ is cyclic. Prove that the following two statements are equivalent:

- There is a point X on the circumcircle of $A B C$ such that $B D X, C E X$ are tangent to each other.
- $A B \cdot A D \leq 4 R^{2}$, where R is the radius of the circumcircle of $A B C$.

