$P \cup M \therefore C$

Individual Finals B

1. Find all pairs of natural numbers (n, k) with the following property:

Given a $k \times k$ array of cells, such that every cell contains one integer, there always exists a path from the left to the right edges such that the sum of the numbers on the path is a multiple of n.

Note: A path from the left to the right edge is a sequence of cells of the array $a_{1}, a_{2}, \ldots, a_{m}$ so that a_{1} is a cell of the leftmost column, a_{m} is the cell of the rightmost column, and a_{i}, a_{i+1} share an edge for all $i=1,2, \ldots, m-1$.
Answer: The pair (n, k) satisfies the above property if and only if $n \leq k$.
Solution: The proof consists of two parts. In case $n>k$, we will construct an array of cells which does not has the above property, while in case $n \leq k$ we will prove that the property always holds.
If $n>k$, consider the following array: let all the columns but the rightmost one be filled with all zeroes and the rightmost with all ones. Then every path from the left edge to the right edge has the sum at least one, and at most k. As $n>k$, this means none of the possible sums is divisible by n, which completes the construction.
In case $n \leq k$, let the sum of numbers in the row i be R_{i}. We will first prove that there is a there is a contiguous segment R_{i}, \ldots, R_{j} such that the sum $R_{i}+\cdots+R_{j}$ is divisible by n. Consider the sums $S_{1}=R_{1}, S_{2}=R_{1}+R_{2}, \ldots, S_{k}=R_{1}+\cdots+S_{k}$. Then, either one of the S_{i} is divisible by n or all of them have non-zero residues modulo n. In the first case, the segment R_{1}, \ldots, R_{i} is a contiguous segment satisfying the above property. In case all residues of S_{i} are non-zero, by Pigeonhole principle, there must be two sums which have the same residue, say $S_{i} \equiv S_{j}(\bmod n)$. This means that $n \mid S_{j}-S_{i}=R_{i+1}+\cdots+R_{j}$, which provides the wanted contiguous segment.
Now, it is easy to construct a path passing only the cells from the rows i, \ldots, j. It suffices to go column by column, passing the whole column before going onto the next one.

Proposed by Pavle Martinović.

2. Prove that there is a positive integer M for which the following statement holds:

For all prime numbers p, there is an integer n for which $\sqrt{p} \leq n \leq M \sqrt{p}$ and $p \bmod n \leq \frac{n}{2020}$.
Note: Here, $p \bmod n$ denotes the unique integer $r \in\{0,1, \ldots, n-1\}$ for which $n \mid p-r$. In other words, $p \bmod n$ is the residue of p upon division by n.
Solution: We will show that any $M>4040^{2}$ satisfies the conditions of the problem.
First, we will consider primes with $p>4040^{2}$. We will show that any $M>4040$ works here. Because $\frac{\sqrt{p}}{2020} \geq 2$, there is an integer q in the interval $\left[\frac{\sqrt{p}}{4040}, \frac{\sqrt{p}}{2020}\right]$. As q is at most $\frac{\sqrt{p}}{2020}$, it divides an integer s in the interval $\left[p-\frac{\sqrt{p}}{2020}, p-1\right]$, as the length of this interval is bigger than q. Pick $n=\frac{s}{q}$. Then, $n \geq \frac{p-\frac{\sqrt{p}}{2020}}{\frac{2 \sqrt{p}}{2020}}=2020\left(\sqrt{p}-\frac{1}{2020}\right) \geq \sqrt{p}$. Similarly, $n \leq \frac{p}{q} \leq 4040 \sqrt{p}<M \sqrt{p}$. Finally, $p \bmod n \leq p-s \leq \frac{\sqrt{p}}{2020} \leq \frac{n}{2020}$.
Now, having proven that any $M>4040$ works in case $p \geq 4040^{2}$, we can consider the primes $p \leq 4040^{2}$ as well. For them, it suffices to choose $M>4040^{2}$ as well, because one can just pick $n=p$, and it will satisfy the conditions of the problem: $p \bmod n=0, n=p \geq \sqrt{p}$ and $n=\sqrt{p} \sqrt{p} \leq 4040 \sqrt{p} \leq M \sqrt{p}$.
Therefore, any integer $M>4040^{2}$ satisfies the conditions of this problem.
3. Let $A B C$ be a triangle and let the points D, E be on the rays $A B, A C$ such that $B C E D$ is cyclic. Prove that the following two statements are equivalent:

- There is a point X on the circumcircle of $A B C$ such that $B D X, C E X$ are tangent to each other.
- $A B \cdot A D \leq 4 R^{2}$, where R is the radius of the circumcircle of $A B C$.

Solution: Let X be an arbitrary point on the circumcircle of $A B C$, and let Y be the intersection of circles $B D X$ and $C E X$ different from X (if the two circles are tangent, set $Y=X$).
Then, when $X \rightarrow B$, then $Y \rightarrow D$, and similarly $X \rightarrow C$ then $Y \rightarrow E$. Moreover, as X continuously goes over the arc $B C, Y$ must move continuously as well.
Now, we have a lemma:
Lemma: $Y \in D E$.
Proof. This follows by angle chasing or by Miquel's thm applied on the triangle $A D E$ and circles $A B C, B D X, C E X$. Here is the angle-chasing solution (we assume oriented angles): $\angle D Y E=\angle D Y X+\angle X Y E=180^{\circ}-\angle X B D+180^{\circ}-\angle E C X=\angle A B X+\angle X C A=180^{\circ}$.
The previous two facts thus give that Y traces the segment $D E$ as X moves from B to C (and possibly something more).
Now, we have the claim that completes the proof: There is a point X that satisfies 1) iff $D E$ intersects the circumcircle Γ of $A B C$. Namely, if $D E$ intersects Γ at Y_{0}, pick X that gives $Y=Y_{0}$. Then, we must have $X=Y$, or $X=B$, as otherwise $B X D$ intersects $A B C$ in three points. $X=B$ is not possible, so we must have $X=Y$, and $B D X$ is tangent to $C E X$. In the other direction, if there is a point X satisfying 1), we must have $X=Y \in D E$, and then $X \in \Gamma \cap D E$.
The final step is to prove that $D E$ intersects $A B C$ iff $A B \cdot A D \leq 4 R^{2}$. Let A^{\prime} be the antipode of A on Γ. It is clear that the tangent to Γ at A^{\prime} is parallel to $D E$. Thus, we have that $D E$ meets Γ iff $D E \cap A A^{\prime}$ lies on the segment $A A^{\prime}$. Finally, this holds iff D is on the segment $A D^{\prime}$, there D^{\prime} is the foot of the perpendicular from A^{\prime} onto $A B$, and this happens precisely when $A D \cdot A B \leq A D^{\prime} \cdot A B=A^{\prime} A^{2}=4 R^{2}$.

Proposed by Aleksa Milojević.

