
Individual Finals B

1. Find all pairs of natural numbers (n, k) with the following property:

Given a k×k array of cells, such that every cell contains one integer, there always exists a path
from the left to the right edges such that the sum of the numbers on the path is a multiple of
n.

Note: A path from the left to the right edge is a sequence of cells of the array a1, a2, . . . , am
so that a1 is a cell of the leftmost column, am is the cell of the rightmost column, and ai, ai+1

share an edge for all i = 1, 2, . . . ,m− 1.

Answer: The pair (n, k) satisfies the above property if and only if n ≤ k.

Solution: The proof consists of two parts. In case n > k, we will construct an array of cells
which does not has the above property, while in case n ≤ k we will prove that the property
always holds.

If n > k, consider the following array: let all the columns but the rightmost one be filled with
all zeroes and the rightmost with all ones. Then every path from the left edge to the right
edge has the sum at least one, and at most k. As n > k, this means none of the possible sums
is divisible by n, which completes the construction.

In case n ≤ k, let the sum of numbers in the row i be Ri. We will first prove that there is
a there is a contiguous segment Ri, ..., Rj such that the sum Ri + · · · + Rj is divisible by n.
Consider the sums S1 = R1, S2 = R1 +R2, . . . , Sk = R1 + · · ·+ Sk. Then, either one of the Si

is divisible by n or all of them have non-zero residues modulo n. In the first case, the segment
R1, . . . , Ri is a contiguous segment satisfying the above property. In case all residues of Si are
non-zero, by Pigeonhole principle, there must be two sums which have the same residue, say
Si ≡ Sj( mod n). This means that n|Sj − Si = Ri+1 + · · · + Rj , which provides the wanted
contiguous segment.

Now, it is easy to construct a path passing only the cells from the rows i, . . . , j. It suffices to
go column by column, passing the whole column before going onto the next one.

Proposed by Pavle Martinović.

2. Prove that there is a positive integer M for which the following statement holds:

For all prime numbers p, there is an integer n for which
√
p ≤ n ≤M

√
p and p mod n ≤ n

2020 .

Note: Here, p mod n denotes the unique integer r ∈ {0, 1, . . . , n − 1} for which n|p − r. In
other words, p mod n is the residue of p upon division by n.

Solution: We will show that any M > 40402 satisfies the conditions of the problem.

First, we will consider primes with p > 40402. We will show that any M > 4040 works here.

Because
√
p

2020 ≥ 2, there is an integer q in the interval [
√
p

4040 ,
√
p

2020 ]. As q is at most
√
p

2020 , it

divides an integer s in the interval [p−
√
p

2020 , p−1], as the length of this interval is bigger than q.

Pick n = s
q . Then, n ≥ p−

√
p

2020√
p

2020

= 2020(
√
p− 1

2020 ) ≥ √p. Similarly, n ≤ p
q ≤ 4040

√
p < M

√
p.

Finally, p mod n ≤ p− s ≤
√
p

2020 ≤
n

2020 .

Now, having proven that any M > 4040 works in case p ≥ 40402, we can consider the primes
p ≤ 40402 as well. For them, it suffices to choose M > 40402 as well, because one can just
pick n = p, and it will satisfy the conditions of the problem: p mod n = 0, n = p ≥ √p and
n =
√
p
√
p ≤ 4040

√
p ≤M

√
p.

Therefore, any integer M > 40402 satisfies the conditions of this problem.
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Proposed by Aleksa Milojević.

3. Let ABC be a triangle and let the points D,E be on the rays AB,AC such that BCED is
cyclic. Prove that the following two statements are equivalent:

• There is a point X on the circumcircle of ABC such that BDX, CEX are tangent to
each other.

• AB ·AD ≤ 4R2, where R is the radius of the circumcircle of ABC.

Solution: Let X be an arbitrary point on the circumcircle of ABC, and let Y be the intersection
of circles BDX and CEX different from X (if the two circles are tangent, set Y = X).

Then, when X → B, then Y → D, and similarly X → C then Y → E. Moreover, as X
continuously goes over the arc BC, Y must move continuously as well.

Now, we have a lemma:

Lemma: Y ∈ DE.
Proof. This follows by angle chasing or by Miquel’s thm applied on the triangle ADE and
circles ABC,BDX,CEX. Here is the angle-chasing solution (we assume oriented angles):
∠DY E = ∠DYX + ∠XY E = 180◦ − ∠XBD + 180◦ − ∠ECX = ∠ABX + ∠XCA = 180◦.

The previous two facts thus give that Y traces the segment DE as X moves from B to C (and
possibly something more).

Now, we have the claim that completes the proof: There is a point X that satisfies 1) iff DE
intersects the circumcircle Γ of ABC. Namely, if DE intersects Γ at Y0, pick X that gives
Y = Y0. Then, we must have X = Y , or X = B, as otherwise BXD intersects ABC in three
points. X = B is not possible, so we must have X = Y , and BDX is tangent to CEX. In
the other direction, if there is a point X satisfying 1), we must have X = Y ∈ DE, and then
X ∈ Γ ∩DE.

The final step is to prove that DE intersects ABC iff AB ·AD ≤ 4R2. Let A′ be the antipode
of A on Γ. It is clear that the tangent to Γ at A′ is parallel to DE. Thus, we have that DE
meets Γ iff DE∩AA′ lies on the segment AA′. Finally, this holds iff D is on the segment AD′,
there D′ is the foot of the perpendicular from A′ onto AB, and this happens precisely when
AD ·AB ≤ AD′ ·AB = A′A2 = 4R2.

Proposed by Aleksa Milojević.
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