
Combinatorics A Solutions

1. Joey is playing with a 2-by-2-by-2 Rubik’s cube made up of 8 1-by-1-by-1 cubes (with two
of these smaller cubes along each of the sides of the bigger cubes). Each face of the Rubik’s
cube is distinct color. However, one day, Joey accidentally breaks the cube! He decides to put
the cube back together into its solved state, placing each of the pieces one by one. However,
due to the nature of the cube, he is only able to put in a cube if it is adjacent to a cube he
already placed. If different orderings of the ways he chooses the cubes are considered distinct,
determine the number of ways he can reassemble the cube.

Proposed by Frank Lu

Answer: 8640 .

Solution: We have 8 choices for the first cube that Joey picks up. Then, he has 3 choices for
the second cube and 4 for the third cube, yielding us 96 ways to first construct an L made
up of three cubes. Now, note that there are 4 places to put the fourth cube. If Joey decides
to not place the cube on top of the center of the L, then we can observe that each of the 4
remaining spots can be filled in any order. Otherwise, if Joey places the cube on the top of
the center of the L, he has 3 places for the next cube, and then he can fix the cube with the
last 3 pieces in any order. This yields 96 · (3 · 24 + 18) = 96 · 90 = 8640 ways that Joey can fix
the cube.

2. Cary has six distinct coins in a jar. Occasionally, he takes out three of the coins and adds a
dot to each of them. Determine the number of orders in which Cary can choose the coins so
that, eventually, for each number i ∈ {0, 1, . . . , 5}, some coin has exactly i dots on it.

Proposed by Frank Lu

Answer: 79200 .

Solution: Label the coins 0, 1, . . . , 5 by how many dots they end up with; notice that there
are 720 ways to make this assignment (depending on how to assign our 6 coins to these dots).
Note that, since the sum of the number of dots in total is 15, and we add 3 dots per draw,
Cary pulled out coins 5 times. This also means that Cary drew the 5 coin every time. Without
loss of generality, assume the 1 coin was drawn in the first pile, and we multiply by 5 later.
Now, we have 1 5, 5, 5, 5, 5 for our draws. Observe that if the 4 coin is never drawn with
the 1 coin, then we have

(
5
2

)
ways to arrange the 2 and 3 coin, all of which work. Otherwise,

we have 4 choices for which draw has neither a 1 nor a 4, resulting in an order like the
following (multiplying by 4 later): 145, 235, 45, 45, 45. Here, we have

(
3
1

)
ways to determine

the remaining place in which the 2 coin was drawn. Our total is thus 720·5·(10+4·3) = 79200.

Note: We initially had 110 as the answer, but this is incorrect since we stated that we had
distinct coins. We apologize for the confusion this would have caused.

3. Katie has a chocolate bar that is a 5-by-5 grid of square pieces, but she only wants to eat the
center piece. To get to it, she performs the following operations:

i. Take a gridline on the chocolate bar, and split the bar along the line.

ii. Remove the piece that doesn’t contain the center.

iii. With the remaining bar, repeat steps 1 and 2.

Determine the number of ways that Katie can perform this sequence of operations so that
eventually she ends up with just the center piece.

Proposed by Frank Lu

Answer: 6384 .
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Solution: Note that each sequence of operations is uniquely determined by which line Katie
breaks along at each step, so we consider sequences of lines. Label the horizontal lines from
top to bottom l1, l2, l3, l4, and the lines from left to right m1,m2,m3,m4. Since Katie ends up
with the center piece, the four lines that bound the center, l2, l3,m2,m3 must have all been
broken along. Observe that if l1 was also broken along, it would have had to been before l2,
as no portion of l1 exists on the same side of l2 as the center piece. A similar logic holds
for l4,m1,m4 with l3,m2,m3, respectively. Note that beyond this restriction, however, every
sequence of these lines is a valid sequence of breaks (we can imagine as though Katie makes
knife cuts through the whole bar first before taking out just the center piece). If Katie makes
i cuts, 4 ≤ i ≤ 8, then we have

(
4
i−4
)

ways to pick which of the four lines that don’t bound

the center have cuts made. Then, of i! ways to arrange these lines, we divide by 2i−4 to
account for the fact that there is only one allowed relative ordering between an outer line and
its corresponding inner line. This yields the following sum:

1 ·4! + 4 · 5!

2
+ 6 · 6!

4
+ 4 · 7!

8
+

8!

16
= 24 + 240 + 1080 + 2520 + 2520 = 264 + 5040 + 1080 = 6384 .

4. Let P be the power set of {1, 2, 3, 4} (meaning the elements of P are the subsets of {1, 2, 3, 4}).
How many subsets S of P are there such that no two distinct integers a, b ∈ {1, 2, 3, 4} appear
together in exactly one element of S?

Proposed by Austen Mazenko

Answer: 21056 .

Solution: First, notice that whether or not ∅, {1}, {2}, {3}, {4} are in S does not affect the
pairing condition, so we multiply by 25 at the end to account for all possible cases where only
some of these are in S.

Now suppose {1, 2, 3, 4} ∈ S. Thus, every pair of elements a, b ∈ {1, 2, 3, 4} appears together
in at least one element of S, so they must appear in another. If S has at least two elements
of cardinality 3, then this condition is satisfied. There are 11 ways to assign at least two such
elements to S, then 26 ways to determine which sets of cardinality 2 are elements of S, giving
11 · 26 in this case.

If S has at least three elements of cardinality 3, then this condition is satisfied. There are
5 ways to assign at least three such elements to S, then 26 ways to determine which sets of
cardinality 2 are elements of S, giving 5 ·26 in this case. If it has two elements of cardinality 3,
WLOG they’re 1,2,3 and 2,3,4: note this may be picked 6 ways. Then, 1,4 must be in S while
the remaining five sets of cardinality 2 can be assigned in 25 ways, giving 6 · 25 possibilities.

If it has only one, WLOG it’s {1, 2, 3}. Thus, we need {1, 4}, {2, 4}, {3, 4} to all be elements of
S. It doesn’t matter if the remaining three sets of cardinality 2 are in S, so we have 23 ways
to assign them; multiplying by 4 to account for the WLOG assumption gives 25. If S has no
elements of cardinality 3, then every possible set of cardinality 2 must be in S, giving 1 case.
Otherwise, {1, 2, 3, 4} /∈ S, so we do casework on the number of three-element sets that are
elements of S.

If all four are elements of S, then each pair of integers occurs in at least two of them, so we
may arbitrarily assign the sets of cardinality 2 in 26 ways.

If only three are elements of S, we may choose them 4 ways. Then, WLOG {1, 2, 3} /∈ S, so
{1, 2}, {1, 3}, {2, 3} ∈ S and we may decide to add the other cardinality 2 sets into S in 23

ways, giving 4 · 23 = 25 in this case.

If only two are elements of S, we may choose them 6 ways. Then, only a single pair will have
occurred twice, so we may either include the two-element subset with this pair or not, giving
2 · 6 = 12 total cases.
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If only one is an element of S, which may be chosen 4 ways, then all the others are fixed.

If none are elements of S, then none of the two-element subsets may be elements of S giving
1 case in this situation.

Tallying our above count gives 5 · 26 + 6 · 25 + 25 + 1 + 26 + 25 + 12 + 4 + 1 = 658, which
multiplied by 25 gives 21056.

5. Jacob has a piece of bread shaped like a figure 8, marked into sections and all initially connected
as one piece of bread. The central part of the “8” is a single section, and each of the two loops
of “8” is divided into an additional 1010 pieces. For each section, there is a 50 percent chance
that Jacob will decide to cut it out and give it to a friend, and this is done independently
for each section. The remaining sections of bread form some number of connected pieces.
If E is the expected number of these pieces, and k is the smallest positive integer so that
2k(E−bEc) ≥ 1, find bEc+k. (Here, we say that if Jacob donates all pieces, there are 0 pieces
left).

Proposed by Frank Lu

Answer: 1515 .

Solution: Let n = 1010 for convenience. We compute the sum
n∑
k=0

ck, where ck is the number

of ways for Jacob to cut out the pieces to form k pieces. We divide this into two cases.

First, if the middle piece is taken, notice that this can be viewed as having two ”rows.” In this
case, suppose that we have a pieces from one loop, and b connected pieces from the other loop.
Then, notice that, along this row, we can split it up by considering the number of sections
taken, going counterclockwise, from the the central (taken) piece to the first remaining piece,
and so on. This can be viewed as some equation x1 + x2 + · · ·+ x2a+1 = n, where the xi ≥ 1,
save for x1 and x2a+1. We see that the number of solutions for this is

(
n−2a+1+2a

2a

)
=
(
n+1
2a

)
.

Similarly, we see that for b this is
(
n+1
2b

)
.

For the other case, if we have the middle piece, suppose that we have a other pieces not with
the middle on one loop, and b on the other. We see that we have now two equations, again.
On one hand, we have x0 +x1 +x2 + · · ·+x2a+1 +x2a+2 = n, which again has

(
n+1
2a+2

)
solutions

to it. However, there is one slight issue here: notice that if we take a = 0, notice that we
have another valid solution, namely with just x1 = 0 (namely that the entire loop is taken).
Similarly, we have

(
n+1
2b+2

)
solutions in this case, where b 6= 0, and for b = 0 we have

(
n+1
2

)
+ 1.

Notice that our expected value is thus

n∑
a=0

n∑
b=0

(a+ b)

(
n+ 1

2a

)(
n+ 1

2b

)
+

n∑
a=1

n∑
b=1

(a+ b+ 1)

(
n+ 1

2b+ 2

)(
n+ 1

2a+ 2

)
+

n∑
b=1

(b+1)

((
n+ 1

2

)
+ 1

)(
n+ 1

2b+ 2

)
+

n∑
a=1

(a+1)

((
n+ 1

2

)
+ 1

)(
n+ 1

2a+ 2

)
+

((
n+ 1

2

)
+ 1

)2

,

where we set the “invalid” binomial coefficients to just be 0. But notice that we can write this
sum as just

n∑
a=0

n∑
b=0

(a+ b)

(
n+ 1

2a

)(
n+ 1

2b

)
+

n∑
a=0

n∑
b=0

(a+ b+ 1)

(
n+ 1

2b+ 2

)(
n+ 1

2a+ 2

)

+

n∑
b=1

(b+ 1)

(
n+ 1

2b+ 2

)
+

n∑
a=1

(a+ 1)

(
n+ 1

2a+ 2

)
+ 2

(
n+ 1

2

)
+ 1.
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We can then further re-write this then as

(n+ 1)

2

n∑
a=0

n∑
b=0

((
n

2a− 1

)(
n+ 1

2b

)
+

(
n+ 1

2a

)(
n

2b− 1

))
+

(n+ 1)

2

n∑
a=1

n∑
b=1

((
n

2a− 1

)(
n+ 1

2b

)

+

(
n+ 1

2a

)(
n

2b− 1

)
−

n∑
a=1

n∑
b=1

(
n+ 1

2b

)(
n+ 1

2a

)
+ 2

n∑
b=1

(
n+ 1

2

(
n

2b+ 1

))
+ 2

(
n+ 1

2

)
+ 1.

Finally, noticing that
n∑
a=0

(
n
2a

)
= 2n−1, this can be written as

n+ 1

2
·
(
22n−1 + 22n−1

)
+
n+ 1

2
·
(
2n−1(2n − 1) + 2n−1(2n − 1)

)
− (2n − 1)2 + 2

(
n+ 1

2
2n−1 − n(n+ 1)

2

)
+ 2

(
n+ 1

2

)
+ 1.

We do one last set of combinations of like terms to get n22n + 2n+1.

Finally, to get the expected value, we divide by 22n+1, the number of total ways that we can
choose the pieces. This gives our expected value of n/2 + 1

2n . Finally, plugging in our value of
n gives 505 + 1

21010 , yielding our answer of 1515.

6. In the country of Princetonia, there are an infinite number of cities, connected by roads. For
every two distinct cities, there is a unique sequence of roads that leads from one city to the
other. Moreover, there are exactly three roads from every city. On a sunny morning in early
July, n tourists have arrived at the capital of Princetonia. They repeat the following process
every day: in every city that contains three or more tourists, three tourists are picked and one
moves to each of the three cities connected to the original one by roads. If there are 2 or fewer
tourists in the city, they do nothing. After some time, all tourists will settle and there will be
no more changing cities. For how many values of n from 1 to 2020 will the tourists end in a
configuration in which no two of them are in the same city?

Proposed by Aleksa Milojevic

Answer: 19 .

Solution: (By Daniel Carter) From the theory of abelian sandpiles, it doesn’t matter in what
order the cities are considered for relocating tourists (or “collapsed”). Because of this, each suc-
cessive final configuration may be found by adding one tourist to the capital and settling every-
thing. Denote by cn = (a0, a1, a2, ...) the configuration associated with n tourists, where ai ∈
{0, 1, 2} is the number of tourists in any city i away from the capital. By symmetry, all of these
cities will have the same number of tourists. Inductively, c3·2k−4 = (2, 2, ..., 2, 0, ...), c3·2k−3 =
(0, 1, 1, ..., 1, 0, ...), and c3·2k−2 = (1, 1, 1, ..., 1, 0, ...), with k twos, k ones, and k + 1 ones in a
row, respectively. This is easily verified for the base case k = 1, then by the independence
of order c2(3·2k−2) = c3·2k+1−4 = (2, 2, ..., 2, 0, ...) with k + 2 twos. Adding one more and col-
lapsing the first k + 1 cities gives (0, 1, 1, ..., 1, 3, 0, 1, 0, ...), (3, 0, 1, ..., 1, 0, ...), (0, 1, ..., 1, 0, ...)
with k + 1 ones. Adding one more completes the inductive step. Finally, note that for any
number strictly between 3 · 2k − 2 and 3 · 2k+1 − 3, there is nobody in any city more than
k away from the capital, so some city must have two people by Pigeonhole Principle (there’s
only 3 · 2k − 2 cities up to that distance, yet more people). Hence, the condition is met only
when n = 3 · 2k − 2 or n = 3 · 2k − 3 for k ∈ N, giving 19 solutions (1,3,4,9,10,21,22,...,1534).
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7. Let f be defined as below for integers n ≥ 0 and a0, a1, ... such that
∑
i≥0 ai is finite:

f(n; a0, a1, ...) =

{
a2020 n = 0∑

i≥0 aif(n−1;a0,...,ai−1,ai−1,ai+1+1,ai+2,...)∑
i≥0 ai

n > 0
.

Find the nearest integer to f(20202; 2020, 0, 0, ...).

Proposed by Daniel Carter

Answer: 18 .

Solution: Consider a balls each uniformly placed into b bins. The value of f(a; b, 0, 0, ...) is the
expected number of bins containing exactly 2020 balls. In general, the value of f(n; a0, a1, ...)
is the expected number of bins containing exactly 2020 balls given that there are n balls left
to place, a0 bins with no balls, a1 bins with exactly 1 ball, and so on: if there are no balls
left to place the expected number of bins with 2020 balls is a2020, otherwise we place one ball
and it has an ak/

∑
i≥0 ai chance of being placed into a bin that currently has k balls and the

second case of f computes the sum of this over all k.

By linearity of expectation, the expected number of bins containing 2020 balls when there are
2020 bins and 20202 total balls is equal to the sum of the probability that any particular bin
has 2020 balls over all bins. The chance that any particular bin has 2020 balls is equal to(
20202

2020

) (
1

2020

)2020 ( 2020−1
2020

)20202−2020
, so the desired value of f is 2020 times this.

Now using Stirling’s approximation of the factorial, n! ≈
√

2πn(n/e)n, this is very close to

x


√

2πx2
(
x2

e

)x2

√
2πx

(
x
e

)x√
2π (x2 − x)

(
x2−x
e

)x2−x

( 1

x

)x(
x− 1

x

)x2−x

where x = 2020. This valiantly simplifies to just 2020√
2π
√
2019

, which is very close to
√

1010/π.

You can use your favorite approximation of π (in fact π ≈ 3 is good enough) to find 1010/π ≈
321.5 is very close to 324 = 182, so the answer is 18.

8. Let f(k) denote the number of triples (a, b, c) of positive integers satisfying a + b + c = 2020
with (k − 1) not dividing a, k not dividing b, and (k + 1) not dividing c. Find the product of
all integers k in the range 3 ≤ k ≤ 20 such that (k + 1) divides f(k).

Proposed by Sunay Joshi

Answer: 360 .

Solution: Let m = 2020, for convenience. We use generating functions.

The generating function for a is

1

1− x
− 1

1− xk−1
=

x− xk−1

(1− x)(1− xk−1)
=

x(1− xk−2)

(1− x)(1− xk−1)
.

Similarly, the generating functions for b and c are x(1−xk−1)
(1−x)(1−xk)

and x(1−xk)
(1−x)(1−xk+1)

, respectively.

Thus, the generating function for a+ b+ c is x3−xk+1

(1−x)3(1−xk+1)
.

We must find the coefficient of xm in this generating function. By adding and subtracting 1
to the numerator, we can rewrite this as

(x3 − 1) + (1− xk+1)

(1− x)3(1− xk+1)
=

−(x2 + x+ 1)

(1− x)2(1− xk+1)
+

1

(1− x)3
.
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The coefficient of xm in 1
(1−x)3 is

(
m+2
2

)
. To find the coefficient of xm in −(x2+x+1)

(1−x)2(1−xk+1)
, we

note that the coefficient of xn in 1
(1−x)2(1−xk+1)

is the coefficient of xn in the expansion

(1 + 2x+ 3x2 + . . .)(1 + xk+1 + x2(k+1) + . . .),

i.e.
t(n,k)∑
t=0

(n+ 1− t(k + 1)),

where t(n, k) = bn+1
k+1 c. Expanding this out, we find that the coefficient of xn is

cn = (n+ 1)(t(n, k) + 1)− t(n, k)(t(n, k) + 1)

2
(k + 1).

Since we are looking for the coefficient of xm in −(x2+x+1)
(1−x)2(1−xk+1)

, we want −(cm+ cm−1 + cm−2).

Putting this all together, the coefficient of xm (i.e. f(k)) in our original generating function is
given as

f(k) =(
m+ 2

2

)
− ((m+ 1)(t(m, k) + 1)− t(m, k)(t(m, k) + 1)

2
(k + 1))

−((m)(t(m− 1, k) + 1)− t(m− 1, k)(t(m− 1, k) + 1)

2
(k + 1))

−((m− 1)(t(m− 2, k) + 1)− t(m− 2, k)(t(m− 2, k) + 1)

2
(k + 1)).

Recall that we are only looking at f(k) (mod k + 1). Since t(·, ·) is always an integer, the
second terms in the parentheses are divisible by (k + 1), and we find

f(k) ≡
(
m+ 2

2

)
− (m+ 1)(t(m, k) + 1)− (m)(t(m− 1, k) + 1)− (m− 1)(t(m− 2, k) + 1)

≡
(
m− 1

2

)
− ((m+ 1)t(m, k) + (m)t(m− 1, k) + (m− 1)t(m− 2, k)) (mod k + 1).

It remains to check which k ∈ [3, 20] make the right hand side equal 0, i.e. when(
m− 1

2

)
−
(

(m+ 1)

⌊
m+ 1

k + 1

⌋
+ (m)

⌊
m

k + 1

⌋
+ (m− 1)

⌊
m− 1

k + 1

⌋)
≡ 0 (mod k + 1).

A quick computation shows the only possible k are 4, 9, and 10, hence the answer is 360.
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