Algebra A

1. Given two polynomials f and g satisfying $f(x) \geq g(x)$ for all real x, a separating line between f and g is a line $h(x)=m x+k$ such that $f(x) \geq h(x) \geq g(x)$ for all real x. Consider the set of all possible separating lines between $f(x)=x^{2}-2 x+5$ and $g(x)=1-x^{2}$. The set of slopes of these lines is a closed interval $[a, b]$. Determine $a^{4}+b^{4}$.
2. Let $P(x, y)$ be a polynomial with real coefficients in the variables x, y that is not identically zero. Suppose that $P(\lfloor 2 a\rfloor,\lfloor 3 a\rfloor)=0$ for all real numbers a. If P has the minimum possible degree and the coefficient of the monomial y is 4 , find the coefficient of $x^{2} y^{2}$ in P.
(The degree of a monomial $x^{m} y^{n}$ is $m+n$. The degree of a polynomial $P(x, y)$ is then the maximum degree of any of its monomials.)
3. Find the number of real solutions (x, y) to the system of equations:

$$
\left\{\begin{array}{l}
\sin \left(x^{2}-y\right)=0 \\
|x|+|y|=2 \pi
\end{array}\right.
$$

4. The set C of all complex numbers z satisfying $(z+1)^{2}=a z$ for some $a \in[-10,3]$ is the union of two curves intersecting at a single point in the complex plane. If the sum of the lengths of these two curves is ℓ, find $\lfloor\ell\rfloor$.
5. Suppose that x, y, z are nonnegative real numbers satisfying the equation

$$
\sqrt{x y z}-\sqrt{(1-x)(1-y) z}-\sqrt{(1-x) y(1-z)}-\sqrt{x(1-y)(1-z)}=-\frac{1}{2}
$$

The largest possible value of $\sqrt{x y}$ equals $\frac{a+\sqrt{b}}{c}$, where a, b, and c are positive integers such that b is not divisible by the square of any prime. Find $a^{2}+b^{2}+c^{2}$.
6. Let x, y, z be positive real numbers satisfying $4 x^{2}-2 x y+y^{2}=64, y^{2}-3 y z+3 z^{2}=36$, and $4 x^{2}+3 z^{2}=49$. If the maximum possible value of $2 x y+y z-4 z x$ can be expressed as \sqrt{n} for some positive integer n, find n.
7. For a positive integer $n \geq 1$, let $a_{n}=\left\lfloor\sqrt[3]{n}+\frac{1}{2}\right\rfloor$. Given a positive integer $N \geq 1$, let \mathcal{F}_{N} denote the set of positive integers $n \geq 1$ such that $a_{n} \leq N$. Let $S_{N}=\sum_{n \in \mathcal{F}_{N}} \frac{1}{a_{n}^{2}}$. As N goes to infinity, the quantity $S_{N}-3 N$ tends to $\frac{a \pi^{2}}{b}$ for relatively prime positive integers a, b. Given that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$, find $a+b$.
8. The function f sends sequences to sequences in the following way: given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ of real numbers, f sends $\left\{a_{n}\right\}_{n=0}^{\infty}$ to the sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$, where $b_{n}=\sum_{k=0}^{n} a_{k}\binom{n}{k}$ for all $n \geq 0$. Let $\left\{F_{n}\right\}_{n=0}^{\infty}$ be the Fibonacci sequence, defined by $F_{0}=0, F_{1}=1$, and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 0$. Let $\left\{c_{n}\right\}_{n=0}^{\infty}$ denote the sequence obtained by applying the function f to the sequence $\left\{F_{n}\right\}_{n=0}^{\infty} 2022$ times. Find $c_{5}(\bmod 1000)$.

Name:

Team:

Write answers in table below:

$P \cup M \therefore C$

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

