
Algebra A Solutions

1. Given two polynomials f and g satisfying f(x) ≥ g(x) for all real x, a separating line between
f and g is a line h(x) = mx + k such that f(x) ≥ h(x) ≥ g(x) for all real x. Consider the
set of all possible separating lines between f(x) = x2 − 2x+ 5 and g(x) = 1− x2. The set of
slopes of these lines is a closed interval [a, b]. Determine a4 + b4.

Proposed by Frank Lu

Answer: 184

Solution: We consider y = mx + b for our line. To have f(x) ≥ mx + b, we need x2 − (m +
2)x + 5 − b to have discriminant at most 0. This becomes the condition b ≤ 5 − (m + 2)2/4.
Similarly, for the other polynomial, we need b ≥ 1 + m2/4. Thus, the set of possible values
of m are 1 + m2/4 ≤ 5 − (m + 2)2/4. In other words, we need m2/2 + m − 3 ≤ 0. Thus,
our values for a and b are the roots of this polynomial (which we rewrite as m2 + 2m − 6).
To get a4 + b4, we write this as (a2 + b2)2 − 2a2b2 = ((a + b)2 − 2ab)2 − 2(ab)2. This is then
(22 + 12)2 + 2 · 62 = 256− 72 = 184.

2. Let P (x, y) be a polynomial with real coefficients in the variables x, y that is not identically
zero. Suppose that P (⌊2a⌋, ⌊3a⌋) = 0 for all real numbers a. If P has the minimum possible
degree and the coefficient of the monomial y is 4, find the coefficient of x2y2 in P .
(The degree of a monomial xmyn is m + n. The degree of a polynomial P (x, y) is then the
maximum degree of any of its monomials.)

Proposed by Sunay Joshi

Answer: 216

Note that the possible values for the pair (⌊2x⌋, ⌊3x⌋) are (2k, 3k), (2k, 3k + 1), (2k + 1, 3k +
1), (2k + 1, 3k + 2) for k ∈ Z. These are roots of the linear polynomials 3x− 2y, 3x− 2y + 2,
3x − 2y − 1, and 3x − 2y + 1, respectively. It follows that P (x, y) is divisible by the product
(3x − 2y)(3x − 2y + 2)(3x − 2y − 1)(3x − 2y + 1). Letting z = 3x − 2y, the product equals
z(z + 2)(z2 − 1) = z4 + 2z3 − z2 − 2z. The coefficient of y is given as −2(−2) = 4, hence in
fact P (x, y) equals the product. To find the coefficient of x2y2, apply the Binomial Theorem
to find

(
4
2

)
· 32 · (−2)2 = 216, our answer.

3. Find the number of real solutions (x, y) to the system of equations:{
sin(x2 − y) = 0

|x|+ |y| = 2π

Proposed by Ben Zenker

Answer: 52

Note that sin(x2 − y) = 0 iff x2 − y = kπ for some k ∈ Z. Therefore we seek the number of
intersections of the parabola y = x2 − kπ with the square |x|+ |y| = 2π for each k.

Since the vertex of the parabola has y-coordinate −πk, it is clear that there are 0 intersections
for k ≤ −3 and 1 intersection for k = −2.

If the vertex of the parabola lies strictly within the square, it is clear that there must be exactly
be 2 intersections. This occurs for −1 ≤ k ≤ 1.

When k = 2, the vertex of the parabola is the vertex (0,−2π) of the square, and one can check
that there are 5 intersections, including the vertex.
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For k ≥ 13, there are no intersections, since the x-intercept of the parabola equals x =
√
πk >

2π. For 3 ≤ k ≤ 12, it is easy to see that there are 4 intersections.

Summing, we find a total of 1 + 2 · 3 + 5 + 10 · 4 = 52 intersections, our answer.

4. The set C of all complex numbers z satisfying (z+1)2 = az for some a ∈ [−10, 3] is the union
of two curves intersecting at a single point in the complex plane. If the sum of the lengths of
these two curves is ℓ, find ⌊ℓ⌋.
Proposed by Julian Shah

Answer: 16

We want solutions to z2 + (2 − a)z + 1 = 0. The discriminant is non-negative when a ∈
(−∞, 0] ∪ [4,∞), so for our purposes, a ≤ 0. When the discriminant is non-negative, it can
be seen that the solutions lie between the solutions to x2 + (2− (−10))z + 1; this interval has
length 2

√
35.

The remaining values of a are in (0, 3]. The solutions when a ∈ (0, 3] are non-real, so they
must be conjugates, and they are reciprocals, so it follows that they lie on the unit circle.

Furthermore, they’re real part is equal to −(2−a)
2 , which ranges from −1 to 1

2 ; thus, the
solution set here is the portion of the unit circle with real part less than 1

2 , which comprises
two thirds of the unit circle. Thus, the length of this region is 4π

3 .

The desired length is then the sum of the lengths of these two regions, which is 2
√
35 + 4π

3 .

Rewriting, this is
√
140 + 4π

3 , which has floor 16.

5. Suppose that x, y, z are nonnegative real numbers satisfying the equation

√
xyz −

√
(1− x)(1− y)z −

√
(1− x)y(1− z)−

√
x(1− y)(1− z) = −1

2
.

The largest possible value of
√
xy equals a+

√
b

c , where a, b, and c are positive integers such
that b is not divisible by the square of any prime. Find a2 + b2 + c2.

Proposed by Frank Lu

Answer: 29

We first observe that x, y, z are required to be real numbers between 0 and 1. With this in
mind, this suggests the parametrization by x = cos2 α1, y = cos2 α2, and z = cos2 α3, where
the values of cosα1, cosα2, cosα3 lie between 0 and π

2 .

This means that, substituting in the values, we get the equation cosα1 cosα2 cosα3−sinα1 sinα2 cosα3−
sinα1 cosα2 sinα3 − cosα1 sinα2 sinα3. But we can apply the sum of angles formula to yield
that this is equal to cos(α1 + α2) cosα3 − sin(α1 + α2) sinα3 = cos(α1 + α2 + α3). It follows
that α1 + α2 + α3 is equal to 2π

3 .

However, notice that
√
xy = cosα1 cosα2 = 1

2 (cos(α1 +α2)+ cos(α1 −α2)). From here, notice
that given α3, we can maximize this value by making α1 = α2. It then suffices to find the α3

such that 1
2 (cos(α1 + α2) + 1) is maximized. But to do this, we need to minimize α1 + α2.

We recall, on the other hand, that α3 ≤ π
2 , meaning that we need to have α1 + α3 ≥ π

6 .

Using this value gives us our maximum value as 2+
√
3

4 . The answer that we seek is then
22 + 32 + 42 = 4 + 9 + 16 = 29.

6. Let x, y, z be positive real numbers satisfying 4x2 − 2xy + y2 = 64, y2 − 3yz + 3z2 = 36, and
4x2 + 3z2 = 49. If the maximum possible value of 2xy + yz − 4zx can be expressed as

√
n for

some positive integer n, find n.

Proposed by Sunay Joshi
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Answer: 2205

Consider the substitution a = 2x, b = y, c = z
√
3. The system of equations becomes a2 +

b2 − ab = 82, b2 + c2 − bc
√
3 = 62, and c2 + a2 = 72. The desired quantity becomes ab +

bc 1√
3
− ca 2√

3
= 4√

3
( 12ab

√
3
2 + 1

2bc
1
2 − ca 1

2 ). By the Law of Cosines, the values a, b, c can be

interpreted geometrically as follows. Consider a quadrilateral ABCD with AB = a, AC = b,
AD = c, ∠BAC = 60◦, and ∠CAD = 30◦. Then the given equalities imply that BC = 8,
CD = 6, and BD = 7. By the sine area formula, the desired quantity can be seen to equal
4√
3
([BAC] + [DAC]− [BAD]).

We now distinguish two configurations: (1) if A,C lie on the same side of line BD, and (2) if
A,C lie on opposite sides of line BD. In either case, the absolute value of the desired quantity
is 4√

3
[BCD], and configuration (2) attains the positive (hence maximum) value. Since the

sides of △BCD are 6, 7, 8, Heron’s formula implies that [BCD] = 21
√
15

4 . Hence our quantity

is 4√
3
· 21

√
15

4 = 21
√
5 =

√
2205, and our answer is 2205.

7. For a positive integer n ≥ 1, let an = ⌊ 3
√
n + 1

2⌋. Given a positive integer N ≥ 1, let FN

denote the set of positive integers n ≥ 1 such that an ≤ N . Let SN =
∑

n∈FN

1
a2
n
. As N goes to

infinity, the quantity SN − 3N tends to aπ2

b for relatively prime positive integers a, b. Given

that
∞∑
k=1

1
k2 = π2

6 , find a+ b.

Proposed by Sunay Joshi

Answer: 97

We claim that the desired limit equals 1
16

∑∞
k=1

1
k2 , or equivalently

1π2

96 , which yields an answer
of 97.

Note that an = k iff k ≤ 3
√
n+ 1

2 < k+1, or equivalently (k− 1
2 )

3 ≤ n < (k+ 1
2 )

3. Expanding,
we find

k3 − 3

2
k2 +

3

4
k − 1

8
≤ n < k3 +

3

2
k2 +

3

4
k +

1

8

The upper and lower bounds differ by 3k2+ 1
4 . Note that if m is a real number with {m} > 1

4 ,
then there are exactly 3k2 integers n in the interval [m−(3k2+ 1

4 ),m). However if {m} ∈ (0, 1
4 ],

there are exactly 3k2 + 1 integers in the interval. The upper bound of k3 + 3
2k

2 + 3
4k + 1

8 has
fractional part that is a multiple of 1

8 . Thus there are 3k
2+1 values of n iff the fractional part

is exactly 1
8 , namely when 3

2k
2 + 3

4k is an integer and when k is divisible by 4. It follows that
there are 3k2 values of n such that an = k if 4 does not divide k and 3k2 +1 values otherwise.

We may therefore rewrite the sum EN as

EN =

N∑
k=1

3k2 + 1[4|k]

k2
− 3N =

∑
4|k,k≤N

1

k2
=

1

16

⌊N/4⌋∑
k=1

1

k2

Sending N → ∞, we find a limit of π2/96, as desired.

8. The function f sends sequences to sequences in the following way: given a sequence {an}∞n=0 of
real numbers, f sends {an}∞n=0 to the sequence {bn}∞n=0, where bn =

∑n
k=0 ak

(
n
k

)
for all n ≥ 0.

Let {Fn}∞n=0 be the Fibonacci sequence, defined by F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn

for all n ≥ 0. Let {cn}∞n=0 denote the sequence obtained by applying the function f to the
sequence {Fn}∞n=0 2022 times. Find c5 (mod 1000).

Proposed by Sunay Joshi
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Answer: 775

Suppose that an satisfies the recurrence an+2 = san+1 − pan for all n ≥ 0 with a0 = 0, a1 = 1.
We claim that if f is applied to {an}, the resulting sequence bn satisfies the recurrence bn+2 =
(s+ 2)bn+1 − (s+ p+ 1)bn for all n ≥ 0, with b0 = 0, b1 = 1. To see this, suppose that an has
explicit formula an = c1α

n+ c2β
n for n ≥ 0, where α+β = s and αβ = p. Then by definition,

bn =
∑n

k=0(c1α
k + c2β

k)
(
n
k

)
= c1

∑n
k=0 α

k
(
n
k

)
+ c2

∑n
k=0 β

k
(
n
k

)
. By the Binomial Theorem,

this may be rewritten as bn = c1(1+α)n+c2(1+β)n. Thus the recurrence bn+2 = s′bn+1−p′bn
satisfies s′ = (1+α) + (1+ β) = s+2 and p′ = (1+α)(1 + β) = 1+ (α+ β) +αβ = s+ p+1,
as claimed. The initial conditions b0 = 0 and b1 = 1 follow from definition: b0 =

(
0
0

)
a0 = 0

and b1 =
(
1
0

)
a0 +

(
1
1

)
a1 = 1.

Since Fn+2 = 1Fn+1 − (−1)Fn, the Fibonacci sequence has (s, p) = (1,−1). If f is applied
k times to {Fn} (k ≥ 0), one can show by induction that the resulting pair (s, p) is (s, p) =
(2k + 1, k2 + k − 1). In particular, for k = 2022, we have (s, p) ≡ (45, 505) (mod 1000), so
that cn+2 ≡ 45cn+1 − 505cn. We now simply compute the first 6 terms of the sequence {cn}:
c0 = 0, c1 = 1, c2 = 45, c3 = 452 − 505 ≡ −408, c4 ≡ 45(−408) − 45(505) ≡ −325, and
c5 ≡ 45(−325)− 505(−408) ≡ 775. Thus our answer is 775.
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