Algebra A Solutions

1. Given two polynomials f and g satisfying $f(x) \geq g(x)$ for all real x, a separating line between f and g is a line $h(x)=m x+k$ such that $f(x) \geq h(x) \geq g(x)$ for all real x. Consider the set of all possible separating lines between $f(x)=x^{2}-2 x+5$ and $g(x)=1-x^{2}$. The set of slopes of these lines is a closed interval $[a, b]$. Determine $a^{4}+b^{4}$.

Proposed by Frank Lu

Answer: 184
Solution: We consider $y=m x+b$ for our line. To have $f(x) \geq m x+b$, we need $x^{2}-(m+$ $2) x+5-b$ to have discriminant at most 0 . This becomes the condition $b \leq 5-(m+2)^{2} / 4$. Similarly, for the other polynomial, we need $b \geq 1+m^{2} / 4$. Thus, the set of possible values of m are $1+m^{2} / 4 \leq 5-(m+2)^{2} / 4$. In other words, we need $m^{2} / 2+m-3 \leq 0$. Thus, our values for a and b are the roots of this polynomial (which we rewrite as $m^{2}+2 m-6$). To get $a^{4}+b^{4}$, we write this as $\left(a^{2}+b^{2}\right)^{2}-2 a^{2} b^{2}=\left((a+b)^{2}-2 a b\right)^{2}-2(a b)^{2}$. This is then $\left(2^{2}+12\right)^{2}+2 \cdot 6^{2}=256-72=184$.
2. Let $P(x, y)$ be a polynomial with real coefficients in the variables x, y that is not identically zero. Suppose that $P(\lfloor 2 a\rfloor,\lfloor 3 a\rfloor)=0$ for all real numbers a. If P has the minimum possible degree and the coefficient of the monomial y is 4 , find the coefficient of $x^{2} y^{2}$ in P.
(The degree of a monomial $x^{m} y^{n}$ is $m+n$. The degree of a polynomial $P(x, y)$ is then the maximum degree of any of its monomials.)
Proposed by Sunay Joshi
Answer: 216
Note that the possible values for the pair $(\lfloor 2 x\rfloor,\lfloor 3 x\rfloor)$ are $(2 k, 3 k),(2 k, 3 k+1),(2 k+1,3 k+$ $1),(2 k+1,3 k+2)$ for $k \in \mathbb{Z}$. These are roots of the linear polynomials $3 x-2 y, 3 x-2 y+2$, $3 x-2 y-1$, and $3 x-2 y+1$, respectively. It follows that $P(x, y)$ is divisible by the product $(3 x-2 y)(3 x-2 y+2)(3 x-2 y-1)(3 x-2 y+1)$. Letting $z=3 x-2 y$, the product equals $z(z+2)\left(z^{2}-1\right)=z^{4}+2 z^{3}-z^{2}-2 z$. The coefficient of y is given as $-2(-2)=4$, hence in fact $P(x, y)$ equals the product. To find the coefficient of $x^{2} y^{2}$, apply the Binomial Theorem to find $\binom{4}{2} \cdot 3^{2} \cdot(-2)^{2}=216$, our answer.
3. Find the number of real solutions (x, y) to the system of equations:

$$
\left\{\begin{array}{l}
\sin \left(x^{2}-y\right)=0 \\
|x|+|y|=2 \pi
\end{array}\right.
$$

Proposed by Ben Zenker

Answer: 52
Note that $\sin \left(x^{2}-y\right)=0$ iff $x^{2}-y=k \pi$ for some $k \in \mathbb{Z}$. Therefore we seek the number of intersections of the parabola $y=x^{2}-k \pi$ with the square $|x|+|y|=2 \pi$ for each k.
Since the vertex of the parabola has y-coordinate $-\pi k$, it is clear that there are 0 intersections for $k \leq-3$ and 1 intersection for $k=-2$.
If the vertex of the parabola lies strictly within the square, it is clear that there must be exactly be 2 intersections. This occurs for $-1 \leq k \leq 1$.
When $k=2$, the vertex of the parabola is the vertex $(0,-2 \pi)$ of the square, and one can check that there are 5 intersections, including the vertex.

P U M ․ C

For $k \geq 13$, there are no intersections, since the x-intercept of the parabola equals $x=\sqrt{\pi k}>$ 2π. For $3 \leq k \leq 12$, it is easy to see that there are 4 intersections.
Summing, we find a total of $1+2 \cdot 3+5+10 \cdot 4=52$ intersections, our answer.
4. The set C of all complex numbers z satisfying $(z+1)^{2}=a z$ for some $a \in[-10,3]$ is the union of two curves intersecting at a single point in the complex plane. If the sum of the lengths of these two curves is ℓ, find $\lfloor\ell\rfloor$.

Proposed by Julian Shah
Answer: 16
We want solutions to $z^{2}+(2-a) z+1=0$. The discriminant is non-negative when $a \in$ $(-\infty, 0] \cup[4, \infty)$, so for our purposes, $a \leq 0$. When the discriminant is non-negative, it can be seen that the solutions lie between the solutions to $x^{2}+(2-(-10)) z+1$; this interval has length $2 \sqrt{35}$.
The remaining values of a are in (0,3]. The solutions when $a \in(0,3]$ are non-real, so they must be conjugates, and they are reciprocals, so it follows that they lie on the unit circle. Furthermore, they're real part is equal to $\frac{-(2-a)}{2}$, which ranges from -1 to $\frac{1}{2}$; thus, the solution set here is the portion of the unit circle with real part less than $\frac{1}{2}$, which comprises two thirds of the unit circle. Thus, the length of this region is $\frac{4 \pi}{3}$.
The desired length is then the sum of the lengths of these two regions, which is $2 \sqrt{35}+\frac{4 \pi}{3}$. Rewriting, this is $\sqrt{140}+\frac{4 \pi}{3}$, which has floor 16 .
5. Suppose that x, y, z are nonnegative real numbers satisfying the equation

$$
\sqrt{x y z}-\sqrt{(1-x)(1-y) z}-\sqrt{(1-x) y(1-z)}-\sqrt{x(1-y)(1-z)}=-\frac{1}{2}
$$

The largest possible value of $\sqrt{x y}$ equals $\frac{a+\sqrt{b}}{c}$, where a, b, and c are positive integers such that b is not divisible by the square of any prime. Find $a^{2}+b^{2}+c^{2}$.
Proposed by Frank Lu
Answer: 29
We first observe that x, y, z are required to be real numbers between 0 and 1 . With this in mind, this suggests the parametrization by $x=\cos ^{2} \alpha_{1}, y=\cos ^{2} \alpha_{2}$, and $z=\cos ^{2} \alpha_{3}$, where the values of $\cos \alpha_{1}, \cos \alpha_{2}, \cos \alpha_{3}$ lie between 0 and $\frac{\pi}{2}$.

This means that, substituting in the values, we get the equation $\cos \alpha_{1} \cos \alpha_{2} \cos \alpha_{3}-\sin \alpha_{1} \sin \alpha_{2} \cos \alpha_{3}-$ $\sin \alpha_{1} \cos \alpha_{2} \sin \alpha_{3}-\cos \alpha_{1} \sin \alpha_{2} \sin \alpha_{3}$. But we can apply the sum of angles formula to yield that this is equal to $\cos \left(\alpha_{1}+\alpha_{2}\right) \cos \alpha_{3}-\sin \left(\alpha_{1}+\alpha_{2}\right) \sin \alpha_{3}=\cos \left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$. It follows that $\alpha_{1}+\alpha_{2}+\alpha_{3}$ is equal to $\frac{2 \pi}{3}$.
However, notice that $\sqrt{x y}=\cos \alpha_{1} \cos \alpha_{2}=\frac{1}{2}\left(\cos \left(\alpha_{1}+\alpha_{2}\right)+\cos \left(\alpha_{1}-\alpha_{2}\right)\right)$. From here, notice that given α_{3}, we can maximize this value by making $\alpha_{1}=\alpha_{2}$. It then suffices to find the α_{3} such that $\frac{1}{2}\left(\cos \left(\alpha_{1}+\alpha_{2}\right)+1\right)$ is maximized. But to do this, we need to minimize $\alpha_{1}+\alpha_{2}$.
We recall, on the other hand, that $\alpha_{3} \leq \frac{\pi}{2}$, meaning that we need to have $\alpha_{1}+\alpha_{3} \geq \frac{\pi}{6}$. Using this value gives us our maximum value as $\frac{2+\sqrt{3}}{4}$. The answer that we seek is then $2^{2}+3^{2}+4^{2}=4+9+16=29$.
6. Let x, y, z be positive real numbers satisfying $4 x^{2}-2 x y+y^{2}=64, y^{2}-3 y z+3 z^{2}=36$, and $4 x^{2}+3 z^{2}=49$. If the maximum possible value of $2 x y+y z-4 z x$ can be expressed as \sqrt{n} for some positive integer n, find n.
Proposed by Sunay Joshi

$P \cup M \therefore C$

Answer: 2205
Consider the substitution $a=2 x, b=y, c=z \sqrt{3}$. The system of equations becomes $a^{2}+$ $b^{2}-a b=8^{2}, b^{2}+c^{2}-b c \sqrt{3}=6^{2}$, and $c^{2}+a^{2}=7^{2}$. The desired quantity becomes $a b+$ $b c \frac{1}{\sqrt{3}}-c a \frac{2}{\sqrt{3}}=\frac{4}{\sqrt{3}}\left(\frac{1}{2} a b \frac{\sqrt{3}}{2}+\frac{1}{2} b c \frac{1}{2}-c a \frac{1}{2}\right)$. By the Law of Cosines, the values a, b, c can be interpreted geometrically as follows. Consider a quadrilateral $A B C D$ with $A B=a, A C=b$, $A D=c, \angle B A C=60^{\circ}$, and $\angle C A D=30^{\circ}$. Then the given equalities imply that $B C=8$, $C D=6$, and $B D=7$. By the sine area formula, the desired quantity can be seen to equal $\frac{4}{\sqrt{3}}([B A C]+[D A C]-[B A D])$.
We now distinguish two configurations: (1) if A, C lie on the same side of line $B D$, and (2) if A, C lie on opposite sides of line $B D$. In either case, the absolute value of the desired quantity is $\frac{4}{\sqrt{3}}[B C D]$, and configuration (2) attains the positive (hence maximum) value. Since the sides of $\triangle B C D$ are $6,7,8$, Heron's formula implies that $[B C D]=\frac{21 \sqrt{15}}{4}$. Hence our quantity is $\frac{4}{\sqrt{3}} \cdot \frac{21 \sqrt{15}}{4}=21 \sqrt{5}=\sqrt{2205}$, and our answer is 2205 .
7. For a positive integer $n \geq 1$, let $a_{n}=\left\lfloor\sqrt[3]{n}+\frac{1}{2}\right\rfloor$. Given a positive integer $N \geq 1$, let \mathcal{F}_{N} denote the set of positive integers $n \geq 1$ such that $a_{n} \leq N$. Let $S_{N}=\sum_{n \in \mathcal{F}_{N}} \frac{1}{a_{n}^{2}}$. As N goes to infinity, the quantity $S_{N}-3 N$ tends to $\frac{a \pi^{2}}{b}$ for relatively prime positive integers a, b. Given that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$, find $a+b$.
Proposed by Sunay Joshi
Answer: 97
We claim that the desired limit equals $\frac{1}{16} \sum_{k=1}^{\infty} \frac{1}{k^{2}}$, or equivalently $\frac{1 \pi^{2}}{96}$, which yields an answer of 97 .
Note that $a_{n}=k$ iff $k \leq \sqrt[3]{n}+\frac{1}{2}<k+1$, or equivalently $\left(k-\frac{1}{2}\right)^{3} \leq n<\left(k+\frac{1}{2}\right)^{3}$. Expanding, we find

$$
k^{3}-\frac{3}{2} k^{2}+\frac{3}{4} k-\frac{1}{8} \leq n<k^{3}+\frac{3}{2} k^{2}+\frac{3}{4} k+\frac{1}{8}
$$

The upper and lower bounds differ by $3 k^{2}+\frac{1}{4}$. Note that if m is a real number with $\{m\}>\frac{1}{4}$, then there are exactly $3 k^{2}$ integers n in the interval $\left[m-\left(3 k^{2}+\frac{1}{4}\right), m\right)$. However if $\{m\} \in\left(0, \frac{1}{4}\right]$, there are exactly $3 k^{2}+1$ integers in the interval. The upper bound of $k^{3}+\frac{3}{2} k^{2}+\frac{3}{4} k+\frac{1}{8}$ has fractional part that is a multiple of $\frac{1}{8}$. Thus there are $3 k^{2}+1$ values of n iff the fractional part is exactly $\frac{1}{8}$, namely when $\frac{3}{2} k^{2}+\frac{3}{4} k$ is an integer and when k is divisible by 4 . It follows that there are $3 k^{2}$ values of n such that $a_{n}=k$ if 4 does not divide k and $3 k^{2}+1$ values otherwise.
We may therefore rewrite the sum E_{N} as

$$
E_{N}=\sum_{k=1}^{N} \frac{3 k^{2}+\mathbf{1}_{[4 \mid k]}}{k^{2}}-3 N=\sum_{4 \mid k, k \leq N} \frac{1}{k^{2}}=\frac{1}{16} \sum_{k=1}^{\lfloor N / 4\rfloor} \frac{1}{k^{2}}
$$

Sending $N \rightarrow \infty$, we find a limit of $\pi^{2} / 96$, as desired.
8. The function f sends sequences to sequences in the following way: given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ of real numbers, f sends $\left\{a_{n}\right\}_{n=0}^{\infty}$ to the sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$, where $b_{n}=\sum_{k=0}^{n} a_{k}\binom{n}{k}$ for all $n \geq 0$. Let $\left\{F_{n}\right\}_{n=0}^{\infty}$ be the Fibonacci sequence, defined by $F_{0}=0, F_{1}=1$, and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 0$. Let $\left\{c_{n}\right\}_{n=0}^{\infty}$ denote the sequence obtained by applying the function f to the sequence $\left\{F_{n}\right\}_{n=0}^{\infty} 2022$ times. Find $c_{5}(\bmod 1000)$.
Proposed by Sunay Joshi

Answer: 775
Suppose that a_{n} satisfies the recurrence $a_{n+2}=s a_{n+1}-p a_{n}$ for all $n \geq 0$ with $a_{0}=0, a_{1}=1$. We claim that if f is applied to $\left\{a_{n}\right\}$, the resulting sequence b_{n} satisfies the recurrence $b_{n+2}=$ $(s+2) b_{n+1}-(s+p+1) b_{n}$ for all $n \geq 0$, with $b_{0}=0, b_{1}=1$. To see this, suppose that a_{n} has explicit formula $a_{n}=c_{1} \alpha^{n}+c_{2} \beta^{n}$ for $n \geq 0$, where $\alpha+\beta=s$ and $\alpha \beta=p$. Then by definition, $b_{n}=\sum_{k=0}^{n}\left(c_{1} \alpha^{k}+c_{2} \beta^{k}\right)\binom{n}{k}=c_{1} \sum_{k=0}^{n} \alpha^{k}\binom{n}{k}+c_{2} \sum_{k=0}^{n} \beta^{k}\binom{n}{k}$. By the Binomial Theorem, this may be rewritten as $b_{n}=c_{1}(1+\alpha)^{n}+c_{2}(1+\beta)^{n}$. Thus the recurrence $b_{n+2}=s^{\prime} b_{n+1}-p^{\prime} b_{n}$ satisfies $s^{\prime}=(1+\alpha)+(1+\beta)=s+2$ and $p^{\prime}=(1+\alpha)(1+\beta)=1+(\alpha+\beta)+\alpha \beta=s+p+1$, as claimed. The initial conditions $b_{0}=0$ and $b_{1}=1$ follow from definition: $b_{0}=\binom{0}{0} a_{0}=0$ and $b_{1}=\binom{1}{0} a_{0}+\binom{1}{1} a_{1}=1$.
Since $F_{n+2}=1 F_{n+1}-(-1) F_{n}$, the Fibonacci sequence has $(s, p)=(1,-1)$. If f is applied k times to $\left\{F_{n}\right\}(k \geq 0)$, one can show by induction that the resulting pair (s, p) is $(s, p)=$ $\left(2 k+1, k^{2}+k-1\right)$. In particular, for $k=2022$, we have $(s, p) \equiv(45,505)(\bmod 1000)$, so that $c_{n+2} \equiv 45 c_{n+1}-505 c_{n}$. We now simply compute the first 6 terms of the sequence $\left\{c_{n}\right\}$: $c_{0}=0, c_{1}=1, c_{2}=45, c_{3}=45^{2}-505 \equiv-408, c_{4} \equiv 45(-408)-45(505) \equiv-325$, and $c_{5} \equiv 45(-325)-505(-408) \equiv 775$. Thus our answer is 775 .

