P U M .. C

Algebra A Solutions

1. Given two polynomials f and g satisfying $f(x) \ge g(x)$ for all real x, a separating line between f and g is a line h(x) = mx + k such that $f(x) \ge h(x) \ge g(x)$ for all real x. Consider the set of all possible separating lines between $f(x) = x^2 - 2x + 5$ and $g(x) = 1 - x^2$. The set of slopes of these lines is a closed interval [a, b]. Determine $a^4 + b^4$.

Proposed by Frank Lu

Answer: 184

Solution: We consider y=mx+b for our line. To have $f(x)\geq mx+b$, we need $x^2-(m+2)x+5-b$ to have discriminant at most 0. This becomes the condition $b\leq 5-(m+2)^2/4$. Similarly, for the other polynomial, we need $b\geq 1+m^2/4$. Thus, the set of possible values of m are $1+m^2/4\leq 5-(m+2)^2/4$. In other words, we need $m^2/2+m-3\leq 0$. Thus, our values for a and b are the roots of this polynomial (which we rewrite as m^2+2m-6). To get a^4+b^4 , we write this as $(a^2+b^2)^2-2a^2b^2=((a+b)^2-2ab)^2-2(ab)^2$. This is then $(2^2+12)^2+2\cdot 6^2=256-72=184$.

2. Let P(x,y) be a polynomial with real coefficients in the variables x,y that is not identically zero. Suppose that $P(\lfloor 2a \rfloor, \lfloor 3a \rfloor) = 0$ for all real numbers a. If P has the minimum possible degree and the coefficient of the monomial y is 4, find the coefficient of x^2y^2 in P. (The degree of a monomial x^my^n is m+n. The degree of a polynomial P(x,y) is then the maximum degree of any of its monomials.)

Proposed by Sunay Joshi

Answer: 216

Note that the possible values for the pair $(\lfloor 2x \rfloor, \lfloor 3x \rfloor)$ are (2k, 3k), (2k, 3k+1), (2k+1, 3k+1), (2k+1, 3k+2) for $k \in \mathbb{Z}$. These are roots of the linear polynomials 3x-2y, 3x-2y+2, 3x-2y-1, and 3x-2y+1, respectively. It follows that P(x,y) is divisible by the product (3x-2y)(3x-2y+2)(3x-2y-1)(3x-2y+1). Letting z=3x-2y, the product equals $z(z+2)(z^2-1)=z^4+2z^3-z^2-2z$. The coefficient of y is given as -2(-2)=4, hence in fact P(x,y) equals the product. To find the coefficient of x^2y^2 , apply the Binomial Theorem to find $\binom{4}{2} \cdot 3^2 \cdot (-2)^2 = 216$, our answer.

3. Find the number of real solutions (x, y) to the system of equations:

$$\begin{cases} \sin(x^2 - y) = 0\\ |x| + |y| = 2\pi \end{cases}$$

Proposed by Ben Zenker

Answer: 52

Note that $\sin(x^2 - y) = 0$ iff $x^2 - y = k\pi$ for some $k \in \mathbb{Z}$. Therefore we seek the number of intersections of the parabola $y = x^2 - k\pi$ with the square $|x| + |y| = 2\pi$ for each k.

Since the vertex of the parabola has y-coordinate $-\pi k$, it is clear that there are 0 intersections for $k \le -3$ and 1 intersection for k = -2.

If the vertex of the parabola lies strictly within the square, it is clear that there must be exactly be 2 intersections. This occurs for $-1 \le k \le 1$.

When k = 2, the vertex of the parabola is the vertex $(0, -2\pi)$ of the square, and one can check that there are 5 intersections, including the vertex.

P U M ... C

For $k \ge 13$, there are no intersections, since the x-intercept of the parabola equals $x = \sqrt{\pi k} > 2\pi$. For $3 \le k \le 12$, it is easy to see that there are 4 intersections.

Summing, we find a total of $1 + 2 \cdot 3 + 5 + 10 \cdot 4 = 52$ intersections, our answer.

4. The set C of all complex numbers z satisfying $(z+1)^2 = az$ for some $a \in [-10,3]$ is the union of two curves intersecting at a single point in the complex plane. If the sum of the lengths of these two curves is ℓ , find $\lfloor \ell \rfloor$.

Proposed by Julian Shah

Answer: 16

We want solutions to $z^2 + (2-a)z + 1 = 0$. The discriminant is non-negative when $a \in (-\infty, 0] \cup [4, \infty)$, so for our purposes, $a \le 0$. When the discriminant is non-negative, it can be seen that the solutions lie between the solutions to $x^2 + (2 - (-10))z + 1$; this interval has length $2\sqrt{35}$.

The remaining values of a are in (0,3]. The solutions when $a \in (0,3]$ are non-real, so they must be conjugates, and they are reciprocals, so it follows that they lie on the unit circle. Furthermore, they're real part is equal to $\frac{-(2-a)}{2}$, which ranges from -1 to $\frac{1}{2}$; thus, the solution set here is the portion of the unit circle with real part less than $\frac{1}{2}$, which comprises two thirds of the unit circle. Thus, the length of this region is $\frac{4\pi}{3}$.

The desired length is then the sum of the lengths of these two regions, which is $2\sqrt{35} + \frac{4\pi}{3}$. Rewriting, this is $\sqrt{140} + \frac{4\pi}{3}$, which has floor 16.

5. Suppose that x, y, z are nonnegative real numbers satisfying the equation

$$\sqrt{xyz} - \sqrt{(1-x)(1-y)z} - \sqrt{(1-x)y(1-z)} - \sqrt{x(1-y)(1-z)} = -\frac{1}{2}.$$

The largest possible value of \sqrt{xy} equals $\frac{a+\sqrt{b}}{c}$, where a, b, and c are positive integers such that b is not divisible by the square of any prime. Find $a^2+b^2+c^2$.

Proposed by Frank Lu

Answer: 29

We first observe that x, y, z are required to be real numbers between 0 and 1. With this in mind, this suggests the parametrization by $x = \cos^2 \alpha_1, y = \cos^2 \alpha_2$, and $z = \cos^2 \alpha_3$, where the values of $\cos \alpha_1, \cos \alpha_2, \cos \alpha_3$ lie between 0 and $\frac{\pi}{2}$.

This means that, substituting in the values, we get the equation $\cos \alpha_1 \cos \alpha_2 \cos \alpha_3 - \sin \alpha_1 \sin \alpha_2 \cos \alpha_3 - \sin \alpha_1 \cos \alpha_2 \sin \alpha_3 - \cos \alpha_1 \sin \alpha_2 \sin \alpha_3$. But we can apply the sum of angles formula to yield that this is equal to $\cos(\alpha_1 + \alpha_2) \cos \alpha_3 - \sin(\alpha_1 + \alpha_2) \sin \alpha_3 = \cos(\alpha_1 + \alpha_2 + \alpha_3)$. It follows that $\alpha_1 + \alpha_2 + \alpha_3$ is equal to $\frac{2\pi}{3}$.

However, notice that $\sqrt{xy} = \cos \alpha_1 \cos \alpha_2 = \frac{1}{2}(\cos(\alpha_1 + \alpha_2) + \cos(\alpha_1 - \alpha_2))$. From here, notice that given α_3 , we can maximize this value by making $\alpha_1 = \alpha_2$. It then suffices to find the α_3 such that $\frac{1}{2}(\cos(\alpha_1 + \alpha_2) + 1)$ is maximized. But to do this, we need to minimize $\alpha_1 + \alpha_2$.

We recall, on the other hand, that $\alpha_3 \leq \frac{\pi}{2}$, meaning that we need to have $\alpha_1 + \alpha_3 \geq \frac{\pi}{6}$. Using this value gives us our maximum value as $\frac{2+\sqrt{3}}{4}$. The answer that we seek is then $2^2 + 3^2 + 4^2 = 4 + 9 + 16 = 29$.

6. Let x, y, z be positive real numbers satisfying $4x^2 - 2xy + y^2 = 64$, $y^2 - 3yz + 3z^2 = 36$, and $4x^2 + 3z^2 = 49$. If the maximum possible value of 2xy + yz - 4zx can be expressed as \sqrt{n} for some positive integer n, find n.

Proposed by Sunay Joshi

P U M .. C

Answer: 2205

Consider the substitution a=2x, b=y, $c=z\sqrt{3}$. The system of equations becomes $a^2+b^2-ab=8^2$, $b^2+c^2-bc\sqrt{3}=6^2$, and $c^2+a^2=7^2$. The desired quantity becomes $ab+bc\frac{1}{\sqrt{3}}-ca\frac{2}{\sqrt{3}}=\frac{4}{\sqrt{3}}(\frac{1}{2}ab\frac{\sqrt{3}}{2}+\frac{1}{2}bc\frac{1}{2}-ca\frac{1}{2})$. By the Law of Cosines, the values a,b,c can be interpreted geometrically as follows. Consider a quadrilateral ABCD with AB=a, AC=b, AD=c, $\angle BAC=60^\circ$, and $\angle CAD=30^\circ$. Then the given equalities imply that BC=8, CD=6, and BD=7. By the sine area formula, the desired quantity can be seen to equal $\frac{4}{\sqrt{3}}([BAC]+[DAC]-[BAD])$.

We now distinguish two configurations: (1) if A,C lie on the same side of line BD, and (2) if A,C lie on opposite sides of line BD. In either case, the absolute value of the desired quantity is $\frac{4}{\sqrt{3}}[BCD]$, and configuration (2) attains the positive (hence maximum) value. Since the sides of $\triangle BCD$ are 6, 7, 8, Heron's formula implies that $[BCD] = \frac{21\sqrt{15}}{4}$. Hence our quantity is $\frac{4}{\sqrt{3}} \cdot \frac{21\sqrt{15}}{4} = 21\sqrt{5} = \sqrt{2205}$, and our answer is 2205.

7. For a positive integer $n \geq 1$, let $a_n = \lfloor \sqrt[3]{n} + \frac{1}{2} \rfloor$. Given a positive integer $N \geq 1$, let \mathcal{F}_N denote the set of positive integers $n \geq 1$ such that $a_n \leq N$. Let $S_N = \sum_{n \in \mathcal{F}_N} \frac{1}{a_n^2}$. As N goes to

infinity, the quantity $S_N - 3N$ tends to $\frac{a\pi^2}{b}$ for relatively prime positive integers a, b. Given that $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$, find a + b.

Proposed by Sunay Joshi

Answer: 97

We claim that the desired limit equals $\frac{1}{16} \sum_{k=1}^{\infty} \frac{1}{k^2}$, or equivalently $\frac{1\pi^2}{96}$, which yields an answer of 97

Note that $a_n = k$ iff $k \le \sqrt[3]{n} + \frac{1}{2} < k + 1$, or equivalently $(k - \frac{1}{2})^3 \le n < (k + \frac{1}{2})^3$. Expanding, we find

$$k^3 - \frac{3}{2}k^2 + \frac{3}{4}k - \frac{1}{8} \le n < k^3 + \frac{3}{2}k^2 + \frac{3}{4}k + \frac{1}{8}$$

The upper and lower bounds differ by $3k^2+\frac{1}{4}$. Note that if m is a real number with $\{m\}>\frac{1}{4}$, then there are exactly $3k^2$ integers n in the interval $[m-(3k^2+\frac{1}{4}),m)$. However if $\{m\}\in(0,\frac{1}{4}]$, there are exactly $3k^2+1$ integers in the interval. The upper bound of $k^3+\frac{3}{2}k^2+\frac{3}{4}k+\frac{1}{8}$ has fractional part that is a multiple of $\frac{1}{8}$. Thus there are $3k^2+1$ values of n iff the fractional part is exactly $\frac{1}{8}$, namely when $\frac{3}{2}k^2+\frac{3}{4}k$ is an integer and when k is divisible by 4. It follows that there are $3k^2$ values of n such that $a_n=k$ if 4 does not divide k and $3k^2+1$ values otherwise.

We may therefore rewrite the sum E_N as

$$E_N = \sum_{k=1}^N \frac{3k^2 + \mathbf{1}_{[4|k]}}{k^2} - 3N = \sum_{4|k,k \le N} \frac{1}{k^2} = \frac{1}{16} \sum_{k=1}^{\lfloor N/4 \rfloor} \frac{1}{k^2}$$

Sending $N \to \infty$, we find a limit of $\pi^2/96$, as desired.

8. The function f sends sequences to sequences in the following way: given a sequence $\{a_n\}_{n=0}^{\infty}$ of real numbers, f sends $\{a_n\}_{n=0}^{\infty}$ to the sequence $\{b_n\}_{n=0}^{\infty}$, where $b_n = \sum_{k=0}^{n} a_k \binom{n}{k}$ for all $n \geq 0$. Let $\{F_n\}_{n=0}^{\infty}$ be the Fibonacci sequence, defined by $F_0 = 0$, $F_1 = 1$, and $F_{n+2} = F_{n+1} + F_n$ for all $n \geq 0$. Let $\{c_n\}_{n=0}^{\infty}$ denote the sequence obtained by applying the function f to the sequence $\{F_n\}_{n=0}^{\infty}$ 2022 times. Find $c_5 \pmod{1000}$.

Proposed by Sunay Joshi

P U M .. C

Answer: 775

Suppose that a_n satisfies the recurrence $a_{n+2}=sa_{n+1}-pa_n$ for all $n\geq 0$ with $a_0=0$, $a_1=1$. We claim that if f is applied to $\{a_n\}$, the resulting sequence b_n satisfies the recurrence $b_{n+2}=(s+2)b_{n+1}-(s+p+1)b_n$ for all $n\geq 0$, with $b_0=0$, $b_1=1$. To see this, suppose that a_n has explicit formula $a_n=c_1\alpha^n+c_2\beta^n$ for $n\geq 0$, where $\alpha+\beta=s$ and $\alpha\beta=p$. Then by definition, $b_n=\sum_{k=0}^n c_1 c_1\alpha^k+c_2\beta^k)\binom{n}{k}=c_1\sum_{k=0}^n \alpha^k\binom{n}{k}+c_2\sum_{k=0}^n \beta^k\binom{n}{k}$. By the Binomial Theorem, this may be rewritten as $b_n=c_1(1+\alpha)^n+c_2(1+\beta)^n$. Thus the recurrence $b_{n+2}=s'b_{n+1}-p'b_n$ satisfies $s'=(1+\alpha)+(1+\beta)=s+2$ and $p'=(1+\alpha)(1+\beta)=1+(\alpha+\beta)+\alpha\beta=s+p+1$, as claimed. The initial conditions $b_0=0$ and $b_1=1$ follow from definition: $b_0=\binom{0}{0}a_0=0$ and $b_1=\binom{1}{0}a_0+\binom{1}{1}a_1=1$.

Since $F_{n+2} = 1F_{n+1} - (-1)F_n$, the Fibonacci sequence has (s,p) = (1,-1). If f is applied k times to $\{F_n\}$ $(k \ge 0)$, one can show by induction that the resulting pair (s,p) is $(s,p) = (2k+1,k^2+k-1)$. In particular, for k=2022, we have $(s,p) \equiv (45,505)$ (mod 1000), so that $c_{n+2} \equiv 45c_{n+1} - 505c_n$. We now simply compute the first 6 terms of the sequence $\{c_n\}$: $c_0 = 0, c_1 = 1, c_2 = 45, c_3 = 45^2 - 505 \equiv -408, c_4 \equiv 45(-408) - 45(505) \equiv -325$, and $c_5 \equiv 45(-325) - 505(-408) \equiv 775$. Thus our answer is 775.