P U M ․ C

Algebra A Solutions

1. Let a, b, c, d, e, f be real numbers such that $a^{2}+b^{2}+c^{2}=14, d^{2}+e^{2}+f^{2}=77$, and $a d+b e+c f=$ 32. Find $(b f-c e)^{2}+(c d-a f)^{2}+(a e-b d)^{2}$.

Proposed by Sunay Joshi
Answer: 54
Solution: Let $u=(a, b, c), v=(d, e, f)$ be vectors in \mathbb{R}^{3}. Then the identity $|u \times v|^{2}=|u|^{2}|v|^{2}-$ $(u \cdot v)^{2}$ implies that the desired expression is simply $\left(a^{2}+b^{2}+c^{2}\right)\left(d^{2}+e^{2}+f^{2}\right)-(a d+b e+c f)^{2}$. This evaluates to $14 \cdot 77-32^{2}=54$.
2. If θ is the unique solution in $(0, \pi)$ to the equation $2 \sin (x)+3 \sin \left(\frac{3 x}{2}\right)+\sin (2 x)+3 \sin \left(\frac{5 x}{2}\right)=0$, then $\cos (\theta)=\frac{a-\sqrt{b}}{c}$ for positive integers a, b, c such that a and c are relatively prime. Find $a+b+c$.

Proposed by Ben Zenker and Nancy Xu
Answer: 110
Using sum-to-product, we get $\sin \left(\frac{3 x}{2}\right)+\sin \left(\frac{5 x}{2}\right)=2 \sin (2 x) \cos \left(\frac{x}{2}\right)$.
Factor out a $\sin (x)$ of the whole expression (after using double angle on $\sin (2 x)$), to get:

$$
\sin (x)\left(2+2 \cos (x)+12 \cos (x) \cos \left(\frac{x}{2}\right)\right)=0
$$

$\sin (x)>0$ in $(0, \pi)$, so we can safely ignore it. Let $u=\cos \left(\frac{x}{2}\right)$, then $\cos (x)=2 u^{2}-1$ using double angle. We now solve $2+2\left(2 u^{2}-1\right)+12 u\left(2 u^{2}-1\right)=0$, which becomes $6 u^{3}+u^{2}-3 u=0$. The solution $u=0$ corresponds to $x=\pi$, so we ignore it as well.
We then just need the solution to $6 u^{2}+u-3=0$, which is $u=\frac{-1+\sqrt{73}}{12}$.
Compute $\cos (x)=2 u^{2}-1=\frac{1-\sqrt{73}}{36}$, so $a+b+c=1+73+36=110$.
3. Let $P(x)$ be a polynomial with integer coefficients satisfying

$$
\left(x^{2}+1\right) P(x-1)=\left(x^{2}-10 x+26\right) P(x)
$$

for all real numbers x. Find the sum of all possible values of $P(0)$ between 1 and 5000 , inclusive.
Proposed by Sunay Joshi
Answer: 5100
It is clear that the only constant solution is $P \equiv 0$, for which $P(0)$ is not in the desired range. Therefore we assume P is nonconstant in what follows. Note that since the functional equation holds for all reals, it holds for all complex numbers. Next, note that the roots of $x^{2}+1$ are $\pm i$, while the roots of $x^{2}-10 x+26$ are $\pm i+5$. Plugging in $x=i$, we find $P(i)=0$. Plugging in $x=i+1$, we find $P(i+1)=0$. Plugging in $x=i+2$, we find $P(i+3)=0$. Lastly, plugging in $x=i+3$, we find $P(i+4)=0$. Since P has real coefficients, its roots also include the conjugates $-i,-i+1,-i+2,-i+3,-i+4$. Therefore $P(x)$ can be written as $P(x)=Q(x)\left(x^{2}+1\right)\left(x^{2}-2 x+2\right)\left(x^{2}-4 x+5\right)\left(x^{2}-6 x+10\right)\left(x^{2}-8 x+17\right)$. We now claim that $Q(x)$ is a nonzero constant. Plugging our expression for P into our functional equation, we find $Q(x-1)=Q(x)$ for all x, hence $Q(x) \equiv c \neq 0$ is a constant.
To finish, set $x=0$ to find $P(x)=1700 c$. The only integer multiples of 1700 between 1 and 5000 are 1700 and 3400 , hence our answer is $1700+3400=5100$.
4. The set of real values of a such that the equation $x^{4}-3 a x^{3}+\left(2 a^{2}+4 a\right) x^{2}-5 a^{2} x+3 a^{2}$ has exactly two nonreal solutions is the set of real numbers between x and y, where $x<y$. If $x+y$ can be written as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m+n$.

Proposed by Frank Lu

Answer: 8
First, we consider trying to factor this into quadratics. Notice that this equals

$$
x^{4}-3 t x^{3}+\left(2 t^{2}-2 t\right) x+t^{2} x-3 t^{2}=\left(x^{2}-t x+t\right)\left(x^{2}-2 t x+3 t\right) .
$$

Therefore, to have two nonreal solutions, one of the discriminants of the quadratics needs to be negative, and the other is nonnegative. In particular, it follows that we need $t^{2}-4 t<$ 0 and $4 t^{2}-12 t \geq 0$ or $t^{2}-4 t \geq 0$ and $4 t^{2}-12 t<0$. For the former to hold, notice that we need $0<t<4$, but $t>3$. The latter cannot hold, however: $t^{2}-4 t \geq 0$ implies that $t \geq 4$ or $t \leq 0$, but $4 t^{2}-12 t<0$ implies that $0<t<3$. Therefore, we see that $a=3, b=4$, and $a+b=7=7 / 1$. Our answer is thus $7+1=8$.
5. Compute $\left\lfloor\sum_{k=0}^{10}\left(3+2 \cos \left(\frac{2 \pi k}{11}\right)\right)^{10}\right\rfloor(\bmod 100)$.

Proposed by Sunay Joshi and Ben Zenker
Answer: 91
Let $n=10$. We claim that the sum equals

$$
\begin{equation*}
(n+1) \sum_{k=0}^{\lfloor n / 2\rfloor} 3^{n-2 k}\binom{n}{2 k}\binom{2 k}{k} \tag{1}
\end{equation*}
$$

Let $\omega=\exp (2 \pi i /(n+1))$. The summand is $\left(\omega^{k}+\omega^{-k}+3\right)^{n}$, which by the multinomial expansion equals $\sum_{a+b+c=n}\binom{n}{a, b, c} 3^{c} \omega^{k(a-b)}$. Since $0 \leq|a-b|<n+1, \sum_{k=0}^{n}=(n+1) \mathbf{1}_{a=b}$. Therefore the sum becomes

$$
\begin{align*}
(n+1) \sum_{a+b+c=n}\binom{n}{a, b, c} 3^{n-a-b} \mathbf{1}_{a=b} & =(n+1) \sum_{a=0}^{n} 3^{n-2 a}\binom{n}{a, a, n-2 a} \tag{2}\\
& =(n+1) \sum_{a=0}^{\lfloor n / 2\rfloor} 3^{n-2 a} \frac{n!}{a!a!(n-2 a)!} \tag{3}\\
& =(n+1) \sum_{a=0}^{\lfloor n / 2\rfloor} 3^{n-2 a}\binom{n}{2 a}\binom{2 a}{a}, \tag{4}
\end{align*}
$$

as claimed.
The desired remainder is therefore

$$
\begin{equation*}
11 \cdot\left[3^{10}\binom{10}{0}\binom{0}{0}+3^{8}\binom{10}{2}\binom{2}{1}+3^{6}\binom{10}{4}\binom{4}{2}+3^{4}\binom{10}{6}\binom{6}{3}+3^{2}\binom{10}{8}\binom{8}{4}+3^{0}\binom{10}{10}\binom{10}{5}\right] \tag{5}
\end{equation*}
$$

$\equiv 11 \cdot\left[3^{10}+3^{8} \cdot 90+3^{6} \cdot 10 \cdot 6+3^{4} \cdot 10 \cdot 20+3^{2} \cdot 45 \cdot 70+52\right]$
$\equiv 91 \quad(\bmod 100)$
6. A polynomial $p(x)=\sum_{j=1}^{2 n-1} a_{j} x^{j}$ with real coefficients is called mountainous if $n \geq 2$ and there exists a real number k such that the polynomial's coefficients satisfy $a_{1}=1, a_{j+1}-a_{j}=k$ for

P U M ㄷC

$1 \leq j \leq n-1$, and $a_{j+1}-a_{j}=-k$ for $n \leq j \leq 2 n-2$; we call k the step size of $p(x)$. A real number k is called good if there exists a mountainous polynomial $p(x)$ with step size k such that $p(-3)=0$. Let S be the sum of all good numbers k satisfying $k \geq 5$ or $k \leq 3$. If $S=\frac{b}{c}$ for relatively prime positive integers b, c, find $b+c$.

Proposed by Sunay Joshi

Answer: 101
We claim that the only good values of k are $k=\frac{7}{3}$ and $\frac{61}{12}$, corresponding to $n=2$ and $n=3$ respectively. This yields $S=\frac{89}{12}$ and an answer of 101 .
To see this, note that a generic mountainous polynomial $p(x)$ can be written as

$$
p(x)=(1-k) \frac{x^{2 n}-x}{x-1}+k x \frac{\left(x^{n}-1\right)^{2}}{(x-1)^{2}}
$$

if $x \neq 1$. This follows from the observation that $\frac{x^{2 n}-x}{x-1}=x+x^{2}+\ldots+x^{2 n-1}$ and $\frac{\left(x^{n}-1\right)^{2}}{(x-1)^{2}}=$ $\left(x^{n-1}+x^{n-2}+\ldots+1\right)^{2}=x+2 x^{2}+\ldots+n x^{n}+(n-1) x^{n+1}+\ldots+x^{2 n-2}$. Hence $p(x)=0$ implies that $(1-k) \frac{x^{2 n}-x}{x-1}+k x \frac{\left(x^{n}-1\right)^{2}}{(x-1)^{2}}=0$. Rearranging and solving for k, we find

$$
k=1-\frac{x^{n}+\frac{1}{x^{n}}-2}{x^{n-1}+\frac{1}{x^{n-1}}-2}
$$

As $n \rightarrow \infty, k=k(n)$ tends to $1-x$. In our case $x=-3$, so the limit equals 4 . It follows that there are only finitely many n such that $|k-4| \geq 1$. Calculating $k(n)$ for $n=2,3$, 4 , we find $k(2)=7 / 3, k(3)=61 / 12$.
We claim that for $n \geq 4,|k(n)-4|<1$, so that $n=2,3$ are the only valid cases. Note that

$$
|k(n)-4|=\left|\frac{8+\frac{8}{(-3)^{n}}}{(-3)^{n-1}+\frac{1}{(-3)^{n-1}}-2}\right|
$$

We split into the cases when n is even $(n \geq 4)$ and n is odd $(n \geq 5)$.
If n is even, then

$$
|k(n)-4|=\frac{8+\frac{8}{3^{n}}}{3^{n-1}+\frac{1}{3^{n-1}}+2}
$$

The inequality $|k(n)-4|<1$ is equivalent to $\frac{1}{3} 3^{2 n}-6 \cdot 3^{n}-5>0$, i.e. $\frac{1}{3} x^{2}-6 x-5>0$ for $x \geq 81$, which is true.
If n is odd, then

$$
|k(n)-4|=\frac{8-\frac{8}{3^{n}}}{3^{n-1}+\frac{1}{3^{n-1}}-2}
$$

The inequality $|k(n)-4|<1$ is equivalent to $\frac{1}{3} 3^{2 n}-10 \cdot 3^{n}+11>0$, i.e. $\frac{1}{3} x^{2}-10 x+11>0$ for $x \geq 243$, which is true. The result follows.
7. Let S be the set of degree 4 polynomials f with complex number coefficients satisfying $f(1)=f(2)^{2}=f(3)^{3}=f(4)^{4}=f(5)^{5}=1$. Find the mean of the fifth powers of the constant terms of all the members of S.
Proposed by Michael Cheng
Answer: 1643751
Let $N=5$ for convenience. By the given condition, $f(n)=\zeta_{n}$ for $1 \leq n \leq N$, where ζ_{n} is an n-th root of unity. Since f is a degree $N-1$ polynomial, the Lagrange interpolation formula

P U M ㄷC

implies that $f(x)=\sum_{n=1}^{N} f(n) \prod_{m \neq n} \frac{x-m}{n-m}$, where the product runs over $m \in\{1, \ldots, N\}$, $m \neq n$. We desire the constant term of f, namely $f(0)=\sum_{n=1}^{N} f(n) \prod_{m \neq n} \frac{-m}{n-m}$. Note that $\prod_{m \neq n} \frac{m}{n-m}=\frac{(-1) \cdots(-(n-1))}{(n-1) \cdots(1)} \cdot \frac{(n+1) \cdots N}{1 \cdots(N-n)}=(-1)^{n-1}\binom{N}{n}$. Let $r_{n}:=(-1)^{n-1}\binom{N}{n}$, so that $f(0)=\sum_{n=1}^{N} \zeta_{n} r_{n}$.
We now consider $f(0)^{M}$, where $M=5$ for convenience. Expand the power to obtain

$$
\begin{equation*}
f(0)^{M}=\sum_{|\alpha|=M} \zeta_{1}^{\alpha_{1}} \cdots \zeta_{N}^{\alpha_{N}} \cdot r_{1}^{\alpha_{1}} \cdots r_{N}^{\alpha_{N}} \cdot\binom{M}{\alpha} \tag{8}
\end{equation*}
$$

Here the sum runs over all N-tuples $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ of nonnegative integers satisfying $\sum_{n=1}^{N} \alpha_{n}=M$, and the multinomial coefficient $\binom{M}{\alpha}:=\frac{M!}{\alpha_{1}!\cdots \alpha_{N}!}$ counts the number of ways a given summand occurs. Note that averaging over all possible f is equivalent to averaging over all possible N-tuples $\left(\zeta_{1}, \ldots, \zeta_{N}\right)$. Therefore if a given α is such that n does not divide α_{n} for some $1 \leq n \leq N$, then $\sum_{\zeta_{n}} \zeta_{n}^{\alpha_{n}}=0$ (where the sum runs over all n-th roots of unity ζ_{n}), hence α contributes zero to the average. In other words, the only N-tuples α that contribute to the average are those for which n divides α_{n} for all $1 \leq n \leq N$; and further the contribution of such an α is simply $r_{1}^{\alpha_{1}} \cdots r_{N}^{\alpha_{N}} \cdot\binom{M}{\alpha}$. Call these N-tuples good. We enumerate such good N-tuples, using the fact that $N=5$ and $M=5$. The partitions of $M=5$ are: $5,4+1,3+2$, $3+1+1,2+2+1,2+1+1+1$, and $1+1+1+1+1$. Note that for any positive integer d, a good tuple cannot have more than $\tau(d)$ indices n for which $\alpha_{n} \mid d$, where τ denotes the number of divisors of d. Applying this fact to $d=1$ and $d=2$ eliminates the fourth, fifth, and sixth partitions above. The only valid partitions are $5,4+1$, and $3+2$.
The partition 5 can correspond to two good tuples: α with $\alpha_{1}=5$ and $\alpha_{n}=0$ for $n \neq 1$; or α with $\alpha_{5}=5$ and $\alpha_{n}=0$ for $n \neq 5$. By our formula above, these contribute $\left(r_{1}^{5}+r_{5}^{5}\right)\binom{5}{5}$ to the average.
The partition $4+1$ can correspond to two good tuples: α with $\alpha_{1}=1, \alpha_{2}=4$, and $\alpha_{n}=0$ otherwise; or α with $\alpha_{1}=1, \alpha_{4}=4$, and $\alpha_{n}=0$ otherwise. By our formula above, these contribute $\left(r_{1}^{1} r_{2}^{4}+r_{1}^{1} r_{4}^{4}\right)\binom{5}{4}$ to the average.
The partition $3+2$ can correspond to three good tuples: α with $\alpha_{1}=2, \alpha_{3}=3$, and $\alpha_{n}=0$ otherwise; α with $\alpha_{1}=3, \alpha_{2}=2$, and $\alpha_{n}=0$ otherwise; or α with $\alpha_{2}=2, \alpha_{3}=3$, and $\alpha_{n}=0$ otherwise. By our formula above, these contribute $\left(r_{1}^{2} r_{3}^{3}+r_{1}^{3} r_{2}^{2}+r_{2}^{2} r_{3}^{3}\right)\binom{5}{3}$ to the average.
Therefore our answer is

$$
\begin{equation*}
\left(r_{1}^{5}+r_{5}^{5}\right)\binom{5}{5}+\left(r_{1}^{1} r_{2}^{4}+r_{1}^{1} r_{4}^{4}\right)\binom{5}{4}+\left(r_{1}^{2} r_{3}^{3}+r_{1}^{3} r_{2}^{2}+r_{2}^{2} r_{3}^{3}\right)\binom{5}{3} \tag{9}
\end{equation*}
$$

where $r_{n}=(-1)^{n-1}\binom{5}{n}$ implies $r_{1}=5, r_{2}=-10, r_{3}=10, r_{4}=-5$, and $r_{5}=1$. Plugging in yields the answer of 1643751, as desired.
8. Given a positive integer m, define the polynomial

$$
P_{m}(z)=z^{4}-\frac{2 m^{2}}{m^{2}+1} z^{3}+\frac{3 m^{2}-2}{m^{2}+1} z^{2}-\frac{2 m^{2}}{m^{2}+1} z+1
$$

Let S be the set of roots of the polynomial $P_{5}(z) \cdot P_{7}(z) \cdot P_{8}(z) \cdot P_{18}(z)$. Let w be the point in the complex plane which minimizes $\sum_{z \in S}|z-w|$. The value of $\sum_{z \in S}|z-w|^{2}$ equals $\frac{a}{b}$ for relatively prime positive integers a and b. Compute $a+b$.
Proposed by Owen Yang and Atharva Pathak
Answer: 171

We claim that $w=\frac{1}{2}$. To show this, we prove that the roots of P_{m} come in pairs $\left(z_{1}, z_{2}\right)$, $\left(z_{3}, z_{4}\right)$ on the unit circle such that $z_{1}, z_{2}, \frac{1}{2}$ are collinear and such that $z_{3}, z_{4}, \frac{1}{2}$ are collinear. By the triangle inequality any minimizer w of the sum of distances must lie on the lines $z_{1} z_{2}$ and $z_{3} z_{4}$, so that $w=\frac{1}{2}$.
We now prove these claims. Note that the coefficients of P_{m} are symmetric, so that $\frac{1}{z^{2}} P_{m}$ can be regarded as a polynomial in $z+\frac{1}{z}$. Applying this trick and rescaling by z^{2}, we obtain the factorization

$$
\begin{equation*}
P_{m}(z)=\left(z^{2}-\frac{m}{m+i} z+\frac{m-i}{m+i}\right)\left(z^{2}-\frac{m}{m-i} z+\frac{m+i}{m-i}\right) \tag{10}
\end{equation*}
$$

The roots z_{1}, z_{2} of the first factor are given as

$$
\begin{equation*}
z=\frac{m \pm \sqrt{m^{2}-4\left(m^{2}+1\right)}}{2(m+i)}=\frac{m \pm i \sqrt{3 m^{2}+4}}{2(m+i)} \tag{11}
\end{equation*}
$$

so that

$$
\begin{equation*}
z-\frac{1}{2}=\frac{-i \pm i \sqrt{3 m^{2}+4}}{2(m+i)}=\frac{i}{2(m+i)}\left(-1 \pm \sqrt{3 m^{2}+4}\right) \tag{12}
\end{equation*}
$$

with ratio $\frac{-1+\sqrt{3 m^{2}+4}}{-1-\sqrt{3 m^{2}+4}} \in \mathbb{R}$, implying the collinearity of $z_{1}, z_{2}, \frac{1}{2}$. Further, note that the modulus of z_{1}, z_{2} are given as

$$
\begin{equation*}
|z|^{2}=\frac{\left|m \pm i \sqrt{3 m^{2}+4}\right|^{2}}{|2(m+i)|^{2}}=\frac{m^{2}+\left(3 m^{2}+4\right)}{4(m+1)^{2}}=1 \tag{13}
\end{equation*}
$$

implying that z_{1}, z_{2} lie on the unit circle. Since the second quadratic factor is obtained by conjugating the first, we obtain the same results for the remaining roots z_{3}, z_{4}. The above claims follow, so that $w=\frac{1}{2}$.
It remains to compute $\sum\left|z-\frac{1}{2}\right|^{2}$, where z runs over the roots of $P_{5}, P_{7}, P_{8}, P_{18}$. Let z be a root of $P_{m}(z)$. Then $\left|z-\frac{1}{2}\right|^{2}=\left(z-\frac{1}{2}\right)\left(\bar{z}-\frac{1}{2}\right)=\frac{5}{4}-\frac{1}{2}\left(z+\frac{1}{z}\right)$, since $|z|=1$. By Vieta, $\sum z=\sum \frac{1}{z}=\frac{2 m^{2}}{m^{2}+1}$, where the sum runs over all four roots of P_{m}, and where we used the fact that the coefficients of P_{m} are symmetric. Therefore P_{m} contributes $5-\frac{2 m^{2}}{m^{2}+1}=3+\frac{2}{m^{2}+1}$ to the desired sum. Summing over $m \in\{5,7,8,18\}$, we find

$$
\begin{align*}
3 \cdot 4+2\left(\frac{1}{5^{2}+1}+\frac{1}{7^{2}+1}+\frac{1}{8^{2}+1}+\frac{1}{18^{2}+1}\right) & =12+2\left(\frac{1}{26}+\frac{1}{50}+\frac{1}{65}+\frac{1}{325}\right) \tag{14}\\
& =12+\frac{2}{13} \tag{15}\\
& =\frac{158}{13} \tag{16}
\end{align*}
$$

so that $a+b=158+13=171$, our answer.

