
Algebra A Solutions

1. Let a, b, c, d, e, f be real numbers such that a2+b2+c2 = 14, d2+e2+f2 = 77, and ad+be+cf =
32. Find (bf − ce)2 + (cd− af)2 + (ae− bd)2.

Proposed by Sunay Joshi

Answer: 54

Solution: Let u = (a, b, c), v = (d, e, f) be vectors in R3. Then the identity |u×v|2 = |u|2|v|2−
(u ·v)2 implies that the desired expression is simply (a2+b2+c2)(d2+e2+f2)−(ad+be+cf)2.
This evaluates to 14 · 77− 322 = 54.

2. If θ is the unique solution in (0, π) to the equation 2 sin(x)+3 sin
(
3x
2

)
+sin(2x)+3 sin

(
5x
2

)
= 0,

then cos(θ) = a−
√
b

c for positive integers a, b, c such that a and c are relatively prime. Find
a+ b+ c.

Proposed by Ben Zenker and Nancy Xu

Answer: 110

Using sum-to-product, we get sin
(
3x
2

)
+ sin

(
5x
2

)
= 2 sin(2x) cos

(
x
2

)
.

Factor out a sin(x) of the whole expression (after using double angle on sin(2x)), to get:

sin(x)
(
2 + 2 cos(x) + 12 cos(x) cos

(x
2

))
= 0

sin(x) > 0 in (0, π), so we can safely ignore it. Let u = cos
(
x
2

)
, then cos(x) = 2u2 − 1 using

double angle. We now solve 2+2(2u2−1)+12u(2u2−1) = 0, which becomes 6u3+u2−3u = 0.
The solution u = 0 corresponds to x = π, so we ignore it as well.

We then just need the solution to 6u2 + u− 3 = 0, which is u = −1+
√
73

12 .

Compute cos(x) = 2u2 − 1 = 1−
√
73

36 , so a+ b+ c = 1 + 73 + 36 = 110 .

3. Let P (x) be a polynomial with integer coefficients satisfying

(x2 + 1)P (x− 1) = (x2 − 10x+ 26)P (x)

for all real numbers x. Find the sum of all possible values of P (0) between 1 and 5000, inclusive.

Proposed by Sunay Joshi

Answer: 5100

It is clear that the only constant solution is P ≡ 0, for which P (0) is not in the desired range.
Therefore we assume P is nonconstant in what follows. Note that since the functional equation
holds for all reals, it holds for all complex numbers. Next, note that the roots of x2 + 1 are
±i, while the roots of x2 − 10x+26 are ±i+5. Plugging in x = i, we find P (i) = 0. Plugging
in x = i + 1, we find P (i + 1) = 0. Plugging in x = i + 2, we find P (i + 3) = 0. Lastly,
plugging in x = i + 3, we find P (i + 4) = 0. Since P has real coefficients, its roots also
include the conjugates −i,−i + 1,−i + 2,−i + 3,−i + 4. Therefore P (x) can be written as
P (x) = Q(x)(x2 + 1)(x2 − 2x + 2)(x2 − 4x + 5)(x2 − 6x + 10)(x2 − 8x + 17). We now claim
that Q(x) is a nonzero constant. Plugging our expression for P into our functional equation,
we find Q(x− 1) = Q(x) for all x, hence Q(x) ≡ c ̸= 0 is a constant.

To finish, set x = 0 to find P (x) = 1700c. The only integer multiples of 1700 between 1 and
5000 are 1700 and 3400, hence our answer is 1700 + 3400 = 5100.
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4. The set of real values of a such that the equation x4 − 3ax3 + (2a2 + 4a)x2 − 5a2x+ 3a2 has
exactly two nonreal solutions is the set of real numbers between x and y, where x < y. If x+ y
can be written as m

n for relatively prime positive integers m,n, find m+ n.

Proposed by Frank Lu

Answer: 8

First, we consider trying to factor this into quadratics. Notice that this equals

x4 − 3tx3 + (2t2 − 2t)x+ t2x− 3t2 = (x2 − tx+ t)(x2 − 2tx+ 3t).

Therefore, to have two nonreal solutions, one of the discriminants of the quadratics needs to
be negative, and the other is nonnegative. In particular, it follows that we need t2 − 4t <
0 and 4t2 − 12t ≥ 0 or t2 − 4t ≥ 0 and 4t2 − 12t < 0. For the former to hold, notice that we
need 0 < t < 4, but t > 3. The latter cannot hold, however: t2 − 4t ≥ 0 implies that t ≥ 4
or t ≤ 0, but 4t2 − 12t < 0 implies that 0 < t < 3. Therefore, we see that a = 3, b = 4, and
a+ b = 7 = 7/1. Our answer is thus 7 + 1 = 8.

5. Compute

⌊
10∑
k=0

(
3 + 2 cos

(
2πk

11

))10
⌋
(mod 100).

Proposed by Sunay Joshi and Ben Zenker

Answer: 91

Let n = 10. We claim that the sum equals

(n+ 1)

⌊n/2⌋∑
k=0

3n−2k

(
n

2k

)(
2k

k

)
(1)

Let ω = exp(2πi/(n + 1)). The summand is (ωk + ω−k + 3)n, which by the multinomial
expansion equals

∑
a+b+c=n

(
n

a,b,c

)
3cωk(a−b). Since 0 ≤ |a− b| < n+ 1,

∑n
k=0 = (n+ 1)1a=b.

Therefore the sum becomes

(n+ 1)
∑

a+b+c=n

(
n

a, b, c

)
3n−a−b1a=b = (n+ 1)

n∑
a=0

3n−2a

(
n

a, a, n− 2a

)
(2)

= (n+ 1)

⌊n/2⌋∑
a=0

3n−2a n!

a!a!(n− 2a)!
(3)

= (n+ 1)

⌊n/2⌋∑
a=0

3n−2a

(
n

2a

)(
2a

a

)
, (4)

as claimed.

The desired remainder is therefore

11 ·
[
310

(
10

0

)(
0

0

)
+ 38

(
10

2

)(
2

1

)
+ 36

(
10

4

)(
4

2

)
+ 34

(
10

6

)(
6

3

)
+ 32

(
10

8

)(
8

4

)
+ 30

(
10

10

)(
10

5

)]
(5)

≡ 11 ·
[
310 + 38 · 90 + 36 · 10 · 6 + 34 · 10 · 20 + 32 · 45 · 70 + 52

]
(6)

≡ 91 (mod 100) (7)

6. A polynomial p(x) =
∑2n−1

j=1 ajx
j with real coefficients is called mountainous if n ≥ 2 and there

exists a real number k such that the polynomial’s coefficients satisfy a1 = 1, aj+1 − aj = k for
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1 ≤ j ≤ n− 1, and aj+1 − aj = −k for n ≤ j ≤ 2n− 2; we call k the step size of p(x). A real
number k is called good if there exists a mountainous polynomial p(x) with step size k such
that p(−3) = 0. Let S be the sum of all good numbers k satisfying k ≥ 5 or k ≤ 3. If S = b

c
for relatively prime positive integers b, c, find b+ c.

Proposed by Sunay Joshi

Answer: 101

We claim that the only good values of k are k = 7
3 and 61

12 , corresponding to n = 2 and n = 3
respectively. This yields S = 89

12 and an answer of 101.

To see this, note that a generic mountainous polynomial p(x) can be written as

p(x) = (1− k)
x2n − x

x− 1
+ kx

(xn − 1)2

(x− 1)2

if x ̸= 1. This follows from the observation that x2n−x
x−1 = x+ x2 + . . .+ x2n−1 and (xn−1)2

(x−1)2 =

(xn−1 + xn−2 + . . .+ 1)2 = x+ 2x2 + . . .+ nxn + (n− 1)xn+1 + . . .+ x2n−2. Hence p(x) = 0

implies that (1− k)x
2n−x
x−1 + kx (xn−1)2

(x−1)2 = 0. Rearranging and solving for k, we find

k = 1−
xn + 1

xn − 2

xn−1 + 1
xn−1 − 2

As n → ∞, k = k(n) tends to 1− x. In our case x = −3, so the limit equals 4. It follows that
there are only finitely many n such that |k − 4| ≥ 1. Calculating k(n) for n = 2, 3, 4, we find
k(2) = 7/3, k(3) = 61/12.

We claim that for n ≥ 4, |k(n)− 4| < 1, so that n = 2, 3 are the only valid cases. Note that

|k(n)− 4| =
∣∣∣∣ 8 + 8

(−3)n

(−3)n−1 + 1
(−3)n−1 − 2

∣∣∣∣
We split into the cases when n is even (n ≥ 4) and n is odd (n ≥ 5).

If n is even, then

|k(n)− 4| =
8 + 8

3n

3n−1 + 1
3n−1 + 2

The inequality |k(n)− 4| < 1 is equivalent to 1
33

2n − 6 · 3n − 5 > 0, i.e. 1
3x

2 − 6x− 5 > 0 for
x ≥ 81, which is true.

If n is odd, then

|k(n)− 4| =
8− 8

3n

3n−1 + 1
3n−1 − 2

The inequality |k(n)− 4| < 1 is equivalent to 1
33

2n − 10 · 3n + 11 > 0, i.e. 1
3x

2 − 10x+ 11 > 0
for x ≥ 243, which is true. The result follows.

7. Let S be the set of degree 4 polynomials f with complex number coefficients satisfying
f(1) = f(2)2 = f(3)3 = f(4)4 = f(5)5 = 1. Find the mean of the fifth powers of the
constant terms of all the members of S.

Proposed by Michael Cheng

Answer: 1643751

Let N = 5 for convenience. By the given condition, f(n) = ζn for 1 ≤ n ≤ N , where ζn is an
n-th root of unity. Since f is a degree N − 1 polynomial, the Lagrange interpolation formula
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implies that f(x) =
∑N

n=1 f(n)
∏

m̸=n
x−m
n−m , where the product runs over m ∈ {1, . . . , N},

m ̸= n. We desire the constant term of f , namely f(0) =
∑N

n=1 f(n)
∏

m̸=n
−m
n−m . Note

that
∏

m̸=n
m

n−m = (−1)···(−(n−1))
(n−1)···(1) · (n+1)···N

1···(N−n) = (−1)n−1
(
N
n

)
. Let rn := (−1)n−1

(
N
n

)
, so that

f(0) =
∑N

n=1 ζnrn.

We now consider f(0)M , where M = 5 for convenience. Expand the power to obtain

f(0)M =
∑

|α|=M

ζα1
1 · · · ζαN

N · rα1
1 · · · rαN

N ·
(
M

α

)
(8)

Here the sum runs over all N -tuples α = (α1, . . . , αN ) of nonnegative integers satisfying∑N
n=1 αn = M , and the multinomial coefficient

(
M
α

)
:= M !

α1!···αN ! counts the number of ways a
given summand occurs. Note that averaging over all possible f is equivalent to averaging over
all possible N -tuples (ζ1, . . . , ζN ). Therefore if a given α is such that n does not divide αn

for some 1 ≤ n ≤ N , then
∑

ζn
ζαn
n = 0 (where the sum runs over all n-th roots of unity ζn),

hence α contributes zero to the average. In other words, the only N -tuples α that contribute
to the average are those for which n divides αn for all 1 ≤ n ≤ N ; and further the contribution
of such an α is simply rα1

1 · · · rαN

N ·
(
M
α

)
. Call these N -tuples good. We enumerate such good

N -tuples, using the fact that N = 5 and M = 5. The partitions of M = 5 are: 5, 4 + 1, 3 + 2,
3+ 1+ 1, 2+ 2+ 1, 2+ 1+ 1+ 1, and 1+ 1+ 1+1+1. Note that for any positive integer d, a
good tuple cannot have more than τ(d) indices n for which αn|d, where τ denotes the number
of divisors of d. Applying this fact to d = 1 and d = 2 eliminates the fourth, fifth, and sixth
partitions above. The only valid partitions are 5, 4 + 1, and 3 + 2.

The partition 5 can correspond to two good tuples: α with α1 = 5 and αn = 0 for n ̸= 1; or α
with α5 = 5 and αn = 0 for n ̸= 5. By our formula above, these contribute (r51 + r55)

(
5
5

)
to the

average.

The partition 4 + 1 can correspond to two good tuples: α with α1 = 1, α2 = 4, and αn = 0
otherwise; or α with α1 = 1, α4 = 4, and αn = 0 otherwise. By our formula above, these
contribute (r11r

4
2 + r11r

4
4)
(
5
4

)
to the average.

The partition 3 + 2 can correspond to three good tuples: α with α1 = 2, α3 = 3, and αn = 0
otherwise; α with α1 = 3, α2 = 2, and αn = 0 otherwise; or α with α2 = 2, α3 = 3, and αn = 0
otherwise. By our formula above, these contribute (r21r

3
3 + r31r

2
2 + r22r

3
3)
(
5
3

)
to the average.

Therefore our answer is

(r51 + r55)

(
5

5

)
+ (r11r

4
2 + r11r

4
4)

(
5

4

)
+ (r21r

3
3 + r31r

2
2 + r22r

3
3)

(
5

3

)
(9)

where rn = (−1)n−1
(
5
n

)
implies r1 = 5, r2 = −10, r3 = 10, r4 = −5, and r5 = 1. Plugging in

yields the answer of 1643751, as desired.

8. Given a positive integer m, define the polynomial

Pm(z) = z4 − 2m2

m2 + 1
z3 +

3m2 − 2

m2 + 1
z2 − 2m2

m2 + 1
z + 1.

Let S be the set of roots of the polynomial P5(z) ·P7(z) ·P8(z) ·P18(z). Let w be the point in
the complex plane which minimizes

∑
z∈S

|z−w|. The value of
∑
z∈S

|z−w|2 equals a
b for relatively

prime positive integers a and b. Compute a+ b.

Proposed by Owen Yang and Atharva Pathak

Answer: 171
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We claim that w = 1
2 . To show this, we prove that the roots of Pm come in pairs (z1, z2),

(z3, z4) on the unit circle such that z1, z2,
1
2 are collinear and such that z3, z4,

1
2 are collinear.

By the triangle inequality any minimizer w of the sum of distances must lie on the lines z1z2
and z3z4, so that w = 1

2 .

We now prove these claims. Note that the coefficients of Pm are symmetric, so that 1
z2Pm can

be regarded as a polynomial in z + 1
z . Applying this trick and rescaling by z2, we obtain the

factorization

Pm(z) = (z2 − m

m+ i
z +

m− i

m+ i
)(z2 − m

m− i
z +

m+ i

m− i
) (10)

The roots z1, z2 of the first factor are given as

z =
m±

√
m2 − 4(m2 + 1)

2(m+ i)
=

m± i
√
3m2 + 4

2(m+ i)
(11)

so that

z − 1

2
=

−i± i
√
3m2 + 4

2(m+ i)
=

i

2(m+ i)
(−1±

√
3m2 + 4) (12)

with ratio −1+
√
3m2+4

−1−
√
3m2+4

∈ R, implying the collinearity of z1, z2,
1
2 . Further, note that the

modulus of z1, z2 are given as

|z|2 =
|m± i

√
3m2 + 4|2

|2(m+ i)|2
=

m2 + (3m2 + 4)

4(m+ 1)2
= 1 (13)

implying that z1, z2 lie on the unit circle. Since the second quadratic factor is obtained by
conjugating the first, we obtain the same results for the remaining roots z3, z4. The above
claims follow, so that w = 1

2 .

It remains to compute
∑

|z − 1
2 |

2, where z runs over the roots of P5, P7, P8, P18. Let z be
a root of Pm(z). Then |z − 1

2 |
2 = (z − 1

2 )(z̄ − 1
2 ) = 5

4 − 1
2 (z + 1

z ), since |z| = 1. By Vieta,∑
z =

∑
1
z = 2m2

m2+1 , where the sum runs over all four roots of Pm, and where we used the fact

that the coefficients of Pm are symmetric. Therefore Pm contributes 5− 2m2

m2+1 = 3 + 2
m2+1 to

the desired sum. Summing over m ∈ {5, 7, 8, 18}, we find

3 · 4 + 2(
1

52 + 1
+

1

72 + 1
+

1

82 + 1
+

1

182 + 1
) = 12 + 2(

1

26
+

1

50
+

1

65
+

1

325
) (14)

= 12 +
2

13
(15)

=
158

13
(16)

so that a+ b = 158 + 13 = 171, our answer.
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