Algebra B

1. Let q be the sum of the expressions $a_{1}^{-a_{2}^{a_{3}^{a_{4}}}}$ over all permutations $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ of $(1,2,3,4)$. Determine $\lfloor q\rfloor$.
2. A pair (f, g) of degree 2 real polynomials is called foolish if $f(g(x))=f(x) \cdot g(x)$ for all real x. How many positive integers less than 2023 can be a root of $g(x)$ for some foolish pair (f, g) ?
3. Given two polynomials f and g satisfying $f(x) \geq g(x)$ for all real x, a separating line between f and g is a line $h(x)=m x+k$ such that $f(x) \geq h(x) \geq g(x)$ for all real x. Consider the set of all possible separating lines between $f(x)=x^{2}-2 x+5$ and $g(x)=1-x^{2}$. The set of slopes of these lines is a closed interval $[a, b]$. Determine $a^{4}+b^{4}$.
4. Let $P(x, y)$ be a polynomial with real coefficients in the variables x, y that is not identically zero. Suppose that $P(\lfloor 2 a\rfloor,\lfloor 3 a\rfloor)=0$ for all real numbers a. If P has the minimum possible degree and the coefficient of the monomial y is 4 , find the coefficient of $x^{2} y^{2}$ in P.
(The degree of a monomial $x^{m} y^{n}$ is $m+n$. The degree of a polynomial $P(x, y)$ is then the maximum degree of any of its monomials.)
5. Find the number of real solutions (x, y) to the system of equations:

$$
\left\{\begin{array}{l}
\sin \left(x^{2}-y\right)=0 \\
|x|+|y|=2 \pi
\end{array}\right.
$$

6. The set C of all complex numbers z satisfying $(z+1)^{2}=a z$ for some $a \in[-10,3]$ is the union of two curves intersecting at a single point in the complex plane. If the sum of the lengths of these two curves is ℓ, find $\lfloor\ell\rfloor$.
7. Suppose that x, y, z are nonnegative real numbers satisfying the equation

$$
\sqrt{x y z}-\sqrt{(1-x)(1-y) z}-\sqrt{(1-x) y(1-z)}-\sqrt{x(1-y)(1-z)}=-\frac{1}{2}
$$

The largest possible value of $\sqrt{x y}$ equals $\frac{a+\sqrt{b}}{c}$, where a, b, and c are positive integers such that b is not divisible by the square of any prime. Find $a^{2}+b^{2}+c^{2}$.
8. Let x, y, z be positive real numbers satisfying $4 x^{2}-2 x y+y^{2}=64, y^{2}-3 y z+3 z^{2}=36$, and $4 x^{2}+3 z^{2}=49$. If the maximum possible value of $2 x y+y z-4 z x$ can be expressed as \sqrt{n} for some positive integer n, find n.

Name:

Team:

Write answers in table below:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

