P U M ㄷC

Algebra B Solutions

1. Consider the equations $x^{2}+y^{2}=16$ and $x y=\frac{9}{2}$. Find the sum, over all ordered pairs (x, y) satisfying these equations, of $|x+y|$.
Proposed by Frank Lu
Answer: 20
We first observe that $x=0, y=0$ are not valid values, so we can then write $x=\frac{9}{2 y}$. Hence, we have that $y^{2}+\frac{81}{4 y^{2}}=16$, or that y must satisfy $y^{4}-16 y^{2}+\frac{81}{4}=0$. We can see that the discriminant of this equation is $16^{2}-81>0$, and so we have 4 distinct real solutions to this equation for y.
Finally, observe that for each pair (x, y), we require that $(x+y)^{2}=x^{2}+y^{2}+2 x y=16+2 \cdot \frac{9}{2}=25$, or that $|x+y|=5$ for each solution. Therefore, our total sum is just the number of solutions times 5 , or 20 .
2. The sum

$$
\sum_{m=1}^{2023} \frac{2 m}{m^{4}+m^{2}+1}
$$

can be expressed as $\frac{a}{b}$ for relatively prime positive integers a, b. Find the remainder when $a+b$ is divided by 1000.

Proposed by Sunay Joshi

Answer: 105
If the sum runs from $m=1$ to $N-1$, then it has the closed form $\frac{N^{2}-N}{N^{2}-N+1}$, where the numerator and denominator are relatively prime. This is by telescoping: note $m^{4}+m^{2}+1=\left(m^{2}-m+\right.$ 1) $\left(m^{2}+m+1\right)$, so partial fraction decomposition gives $\frac{2 m}{m^{4}+m^{2}+1}=\frac{1}{m(m-1)+1}-\frac{1}{m(m+1)+1}$. Accordingly, the sum telescopes into $\frac{1}{1 \cdot 0+1}-\frac{1}{(N-1) \cdot N+1}=\frac{N^{2}-N}{N^{2}-N+1}$, as claimed. Because $N^{2}-N$ and $N^{2}-N+1$ differ by 1 , they're relatively prime, so $a+b=2\left(N^{2}-N\right)+1$. Setting $N=2024$, we find the answer of 105 .
3. Let a, b, c, d, e, f be real numbers such that $a^{2}+b^{2}+c^{2}=14, d^{2}+e^{2}+f^{2}=77$, and $a d+b e+c f=$ 32. Find $(b f-c e)^{2}+(c d-a f)^{2}+(a e-b d)^{2}$.

Proposed by Sunay Joshi
Answer: 54
Solution: Let $u=(a, b, c), v=(d, e, f)$ be vectors in \mathbb{R}^{3}. Then the identity $|u \times v|^{2}=|u|^{2}|v|^{2}-$ $(u \cdot v)^{2}$ implies that the desired expression is simply $\left(a^{2}+b^{2}+c^{2}\right)\left(d^{2}+e^{2}+f^{2}\right)-(a d+b e+c f)^{2}$. This evaluates to $14 \cdot 77-32^{2}=54$.
4. If θ is the unique solution in $(0, \pi)$ to the equation $2 \sin (x)+3 \sin \left(\frac{3 x}{2}\right)+\sin (2 x)+3 \sin \left(\frac{5 x}{2}\right)=0$, then $\cos (\theta)=\frac{a-\sqrt{b}}{c}$ for positive integers a, b, c such that a and c are relatively prime. Find $a+b+c$.

Proposed by Ben Zenker and Nancy Xu
Answer: 110
Using sum-to-product, we get $\sin \left(\frac{3 x}{2}\right)+\sin \left(\frac{5 x}{2}\right)=2 \sin (2 x) \cos \left(\frac{x}{2}\right)$.
Factor out a $\sin (x)$ of the whole expression (after using double angle on $\sin (2 x)$), to get:

$$
\sin (x)\left(2+2 \cos (x)+12 \cos (x) \cos \left(\frac{x}{2}\right)\right)=0
$$

P U M ㄷC

$\sin (x)>0$ in $(0, \pi)$, so we can safely ignore it. Let $u=\cos \left(\frac{x}{2}\right)$, then $\cos (x)=2 u^{2}-1$ using double angle. We now solve $2+2\left(2 u^{2}-1\right)+12 u\left(2 u^{2}-1\right)=0$, which becomes $6 u^{3}+u^{2}-3 u=0$. The solution $u=0$ corresponds to $x=\pi$, so we ignore it as well.
We then just need the solution to $6 u^{2}+u-3=0$, which is $u=\frac{-1+\sqrt{73}}{12}$.
Compute $\cos (x)=2 u^{2}-1=\frac{1-\sqrt{73}}{36}$, so $a+b+c=1+73+36=110$.
5. Let $P(x)$ be a polynomial with integer coefficients satisfying

$$
\left(x^{2}+1\right) P(x-1)=\left(x^{2}-10 x+26\right) P(x)
$$

for all real numbers x. Find the sum of all possible values of $P(0)$ between 1 and 5000 , inclusive.
Proposed by Sunay Joshi
Answer: 5100
It is clear that the only constant solution is $P \equiv 0$, for which $P(0)$ is not in the desired range. Therefore we assume P is nonconstant in what follows. Note that since the functional equation holds for all reals, it holds for all complex numbers. Next, note that the roots of $x^{2}+1$ are $\pm i$, while the roots of $x^{2}-10 x+26$ are $\pm i+5$. Plugging in $x=i$, we find $P(i)=0$. Plugging in $x=i+1$, we find $P(i+1)=0$. Plugging in $x=i+2$, we find $P(i+3)=0$. Lastly, plugging in $x=i+3$, we find $P(i+4)=0$. Since P has real coefficients, its roots also include the conjugates $-i,-i+1,-i+2,-i+3,-i+4$. Therefore $P(x)$ can be written as $P(x)=Q(x)\left(x^{2}+1\right)\left(x^{2}-2 x+2\right)\left(x^{2}-4 x+5\right)\left(x^{2}-6 x+10\right)\left(x^{2}-8 x+17\right)$. We now claim that $Q(x)$ is a nonzero constant. Plugging our expression for P into our functional equation, we find $Q(x-1)=Q(x)$ for all x, hence $Q(x) \equiv c \neq 0$ is a constant.
To finish, set $x=0$ to find $P(x)=1700 c$. The only integer multiples of 1700 between 1 and 5000 are 1700 and 3400 , hence our answer is $1700+3400=5100$.
6. The set of real values of a such that the equation $x^{4}-3 a x^{3}+\left(2 a^{2}+4 a\right) x^{2}-5 a^{2} x+3 a^{2}$ has exactly two nonreal solutions is the set of real numbers between x and y, where $x<y$. If $x+y$ can be written as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m+n$.

Proposed by Frank Lu

Answer: 8
First, we consider trying to factor this into quadratics. Notice that this equals

$$
x^{4}-3 t x^{3}+\left(2 t^{2}-2 t\right) x+t^{2} x-3 t^{2}=\left(x^{2}-t x+t\right)\left(x^{2}-2 t x+3 t\right)
$$

Therefore, to have two nonreal solutions, one of the discriminants of the quadratics needs to be negative, and the other is nonnegative. In particular, it follows that we need $t^{2}-4 t<$ 0 and $4 t^{2}-12 t \geq 0$ or $t^{2}-4 t \geq 0$ and $4 t^{2}-12 t<0$. For the former to hold, notice that we need $0<t<4$, but $t>3$. The latter cannot hold, however: $t^{2}-4 t \geq 0$ implies that $t \geq 4$ or $t \leq 0$, but $4 t^{2}-12 t<0$ implies that $0<t<3$. Therefore, we see that $a=3, b=4$, and $a+b=7=7 / 1$. Our answer is thus $7+1=8$.
7. Compute $\left\lfloor\sum_{k=0}^{10}\left(3+2 \cos \left(\frac{2 \pi k}{11}\right)\right)^{10}\right\rfloor(\bmod 100)$.

Proposed by Sunay Joshi and Ben Zenker
Answer: 91
Let $n=10$. We claim that the sum equals

$$
\begin{equation*}
(n+1) \sum_{k=0}^{\lfloor n / 2\rfloor} 3^{n-2 k}\binom{n}{2 k}\binom{2 k}{k} \tag{1}
\end{equation*}
$$

Let $\omega=\exp (2 \pi i /(n+1))$. The summand is $\left(\omega^{k}+\omega^{-k}+3\right)^{n}$, which by the multinomial expansion equals $\sum_{a+b+c=n}\binom{n}{a, b, c} 3^{c} \omega^{k(a-b)}$. Since $0 \leq|a-b|<n+1, \sum_{k=0}^{n}=(n+1) \mathbf{1}_{a=b}$. Therefore the sum becomes

$$
\begin{align*}
(n+1) \sum_{a+b+c=n}\binom{n}{a, b, c} 3^{n-a-b} \mathbf{1}_{a=b} & =(n+1) \sum_{a=0}^{n} 3^{n-2 a}\binom{n}{a, a, n-2 a} \tag{2}\\
& =(n+1) \sum_{a=0}^{\lfloor n / 2\rfloor} 3^{n-2 a} \frac{n!}{a!a!(n-2 a)!} \tag{3}\\
& =(n+1) \sum_{a=0}^{\lfloor n / 2\rfloor} 3^{n-2 a}\binom{n}{2 a}\binom{2 a}{a}, \tag{4}
\end{align*}
$$

as claimed.
The desired remainder is therefore
$11 \cdot\left[3^{10}\binom{10}{0}\binom{0}{0}+3^{8}\binom{10}{2}\binom{2}{1}+3^{6}\binom{10}{4}\binom{4}{2}+3^{4}\binom{10}{6}\binom{6}{3}+3^{2}\binom{10}{8}\binom{8}{4}+3^{0}\binom{10}{10}\binom{10}{5}\right]$
$\equiv 11 \cdot\left[3^{10}+3^{8} \cdot 90+3^{6} \cdot 10 \cdot 6+3^{4} \cdot 10 \cdot 20+3^{2} \cdot 45 \cdot 70+52\right]$
$\equiv 91 \quad(\bmod 100)$
8. A polynomial $p(x)=\sum_{j=1}^{2 n-1} a_{j} x^{j}$ with real coefficients is called mountainous if $n \geq 2$ and there exists a real number k such that the polynomial's coefficients satisfy $a_{1}=1, a_{j+1}-a_{j}=k$ for $1 \leq j \leq n-1$, and $a_{j+1}-a_{j}=-k$ for $n \leq j \leq 2 n-2$; we call k the step size of $p(x)$. A real number k is called good if there exists a mountainous polynomial $p(x)$ with step size k such that $p(-3)=0$. Let S be the sum of all good numbers k satisfying $k \geq 5$ or $k \leq 3$. If $S=\frac{b}{c}$ for relatively prime positive integers b, c, find $b+c$.

Proposed by Sunay Joshi

Answer: 101
We claim that the only good values of k are $k=\frac{7}{3}$ and $\frac{61}{12}$, corresponding to $n=2$ and $n=3$ respectively. This yields $S=\frac{89}{12}$ and an answer of 101 .
To see this, note that a generic mountainous polynomial $p(x)$ can be written as

$$
p(x)=(1-k) \frac{x^{2 n}-x}{x-1}+k x \frac{\left(x^{n}-1\right)^{2}}{(x-1)^{2}}
$$

if $x \neq 1$. This follows from the observation that $\frac{x^{2 n}-x}{x-1}=x+x^{2}+\ldots+x^{2 n-1}$ and $\frac{\left(x^{n}-1\right)^{2}}{(x-1)^{2}}=$ $\left(x^{n-1}+x^{n-2}+\ldots+1\right)^{2}=x+2 x^{2}+\ldots+n x^{n}+(n-1) x^{n+1}+\ldots+x^{2 n-2}$. Hence $p(x)=0$ implies that $(1-k) \frac{x^{2 n}-x}{x-1}+k x \frac{\left(x^{n}-1\right)^{2}}{(x-1)^{2}}=0$. Rearranging and solving for k, we find

$$
k=1-\frac{x^{n}+\frac{1}{x^{n}}-2}{x^{n-1}+\frac{1}{x^{n-1}}-2}
$$

As $n \rightarrow \infty, k=k(n)$ tends to $1-x$. In our case $x=-3$, so the limit equals 4 . It follows that there are only finitely many n such that $|k-4| \geq 1$. Calculating $k(n)$ for $n=2,3,4$, we find $k(2)=7 / 3, k(3)=61 / 12$.

We claim that for $n \geq 4,|k(n)-4|<1$, so that $n=2,3$ are the only valid cases. Note that

$$
|k(n)-4|=\left|\frac{8+\frac{8}{(-3)^{n}}}{(-3)^{n-1}+\frac{1}{(-3)^{n-1}}-2}\right|
$$

We split into the cases when n is even $(n \geq 4)$ and n is odd ($n \geq 5$).
If n is even, then

$$
|k(n)-4|=\frac{8+\frac{8}{3^{n}}}{3^{n-1}+\frac{1}{3^{n-1}}+2}
$$

The inequality $|k(n)-4|<1$ is equivalent to $\frac{1}{3} 3^{2 n}-6 \cdot 3^{n}-5>0$, i.e. $\frac{1}{3} x^{2}-6 x-5>0$ for $x \geq 81$, which is true.
If n is odd, then

$$
|k(n)-4|=\frac{8-\frac{8}{3^{n}}}{3^{n-1}+\frac{1}{3^{n-1}}-2}
$$

The inequality $|k(n)-4|<1$ is equivalent to $\frac{1}{3} 3^{2 n}-10 \cdot 3^{n}+11>0$, i.e. $\frac{1}{3} x^{2}-10 x+11>0$ for $x \geq 243$, which is true. The result follows.

