
Algebra B Solutions

1. Consider the equations x2 + y2 = 16 and xy = 9
2 . Find the sum, over all ordered pairs (x, y)

satisfying these equations, of |x+ y|.
Proposed by Frank Lu

Answer: 20

We first observe that x = 0, y = 0 are not valid values, so we can then write x = 9
2y . Hence,

we have that y2 + 81
4y2 = 16, or that y must satisfy y4 − 16y2 + 81

4 = 0. We can see that the

discriminant of this equation is 162 − 81 > 0, and so we have 4 distinct real solutions to this
equation for y.

Finally, observe that for each pair (x, y), we require that (x+y)2 = x2+y2+2xy = 16+2· 92 = 25,
or that |x+ y| = 5 for each solution. Therefore, our total sum is just the number of solutions
times 5, or 20.

2. The sum
2023∑
m=1

2m

m4 +m2 + 1

can be expressed as a
b for relatively prime positive integers a, b. Find the remainder when a+b

is divided by 1000.

Proposed by Sunay Joshi

Answer: 105

If the sum runs from m = 1 to N−1, then it has the closed form N2−N
N2−N+1 , where the numerator

and denominator are relatively prime. This is by telescoping: note m4 +m2 + 1 = (m2 −m+
1)(m2 + m + 1), so partial fraction decomposition gives 2m

m4+m2+1 = 1
m(m−1)+1 − 1

m(m+1)+1 .

Accordingly, the sum telescopes into 1
1·0+1 − 1

(N−1)·N+1 = N2−N
N2−N+1 , as claimed. Because

N2−N and N2−N +1 differ by 1, they’re relatively prime, so a+ b = 2(N2−N)+1. Setting
N = 2024, we find the answer of 105.

3. Let a, b, c, d, e, f be real numbers such that a2+b2+c2 = 14, d2+e2+f2 = 77, and ad+be+cf =
32. Find (bf − ce)2 + (cd− af)2 + (ae− bd)2.

Proposed by Sunay Joshi

Answer: 54

Solution: Let u = (a, b, c), v = (d, e, f) be vectors in R3. Then the identity |u×v|2 = |u|2|v|2−
(u ·v)2 implies that the desired expression is simply (a2+b2+c2)(d2+e2+f2)−(ad+be+cf)2.
This evaluates to 14 · 77− 322 = 54.

4. If θ is the unique solution in (0, π) to the equation 2 sin(x)+3 sin
(
3x
2

)
+sin(2x)+3 sin

(
5x
2

)
= 0,

then cos(θ) = a−
√
b

c for positive integers a, b, c such that a and c are relatively prime. Find
a+ b+ c.

Proposed by Ben Zenker and Nancy Xu

Answer: 110

Using sum-to-product, we get sin
(
3x
2

)
+ sin

(
5x
2

)
= 2 sin(2x) cos

(
x
2

)
.

Factor out a sin(x) of the whole expression (after using double angle on sin(2x)), to get:

sin(x)
(
2 + 2 cos(x) + 12 cos(x) cos

(x
2

))
= 0
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sin(x) > 0 in (0, π), so we can safely ignore it. Let u = cos
(
x
2

)
, then cos(x) = 2u2 − 1 using

double angle. We now solve 2+2(2u2−1)+12u(2u2−1) = 0, which becomes 6u3+u2−3u = 0.
The solution u = 0 corresponds to x = π, so we ignore it as well.

We then just need the solution to 6u2 + u− 3 = 0, which is u = −1+
√
73

12 .

Compute cos(x) = 2u2 − 1 = 1−
√
73

36 , so a+ b+ c = 1 + 73 + 36 = 110 .

5. Let P (x) be a polynomial with integer coefficients satisfying

(x2 + 1)P (x− 1) = (x2 − 10x+ 26)P (x)

for all real numbers x. Find the sum of all possible values of P (0) between 1 and 5000, inclusive.

Proposed by Sunay Joshi

Answer: 5100

It is clear that the only constant solution is P ≡ 0, for which P (0) is not in the desired range.
Therefore we assume P is nonconstant in what follows. Note that since the functional equation
holds for all reals, it holds for all complex numbers. Next, note that the roots of x2 + 1 are
±i, while the roots of x2 − 10x+26 are ±i+5. Plugging in x = i, we find P (i) = 0. Plugging
in x = i + 1, we find P (i + 1) = 0. Plugging in x = i + 2, we find P (i + 3) = 0. Lastly,
plugging in x = i + 3, we find P (i + 4) = 0. Since P has real coefficients, its roots also
include the conjugates −i,−i + 1,−i + 2,−i + 3,−i + 4. Therefore P (x) can be written as
P (x) = Q(x)(x2 + 1)(x2 − 2x + 2)(x2 − 4x + 5)(x2 − 6x + 10)(x2 − 8x + 17). We now claim
that Q(x) is a nonzero constant. Plugging our expression for P into our functional equation,
we find Q(x− 1) = Q(x) for all x, hence Q(x) ≡ c ̸= 0 is a constant.

To finish, set x = 0 to find P (x) = 1700c. The only integer multiples of 1700 between 1 and
5000 are 1700 and 3400, hence our answer is 1700 + 3400 = 5100.

6. The set of real values of a such that the equation x4 − 3ax3 + (2a2 + 4a)x2 − 5a2x+ 3a2 has
exactly two nonreal solutions is the set of real numbers between x and y, where x < y. If x+ y
can be written as m

n for relatively prime positive integers m,n, find m+ n.

Proposed by Frank Lu

Answer: 8

First, we consider trying to factor this into quadratics. Notice that this equals

x4 − 3tx3 + (2t2 − 2t)x+ t2x− 3t2 = (x2 − tx+ t)(x2 − 2tx+ 3t).

Therefore, to have two nonreal solutions, one of the discriminants of the quadratics needs to
be negative, and the other is nonnegative. In particular, it follows that we need t2 − 4t <
0 and 4t2 − 12t ≥ 0 or t2 − 4t ≥ 0 and 4t2 − 12t < 0. For the former to hold, notice that we
need 0 < t < 4, but t > 3. The latter cannot hold, however: t2 − 4t ≥ 0 implies that t ≥ 4
or t ≤ 0, but 4t2 − 12t < 0 implies that 0 < t < 3. Therefore, we see that a = 3, b = 4, and
a+ b = 7 = 7/1. Our answer is thus 7 + 1 = 8.

7. Compute

⌊
10∑
k=0

(
3 + 2 cos

(
2πk

11

))10
⌋
(mod 100).

Proposed by Sunay Joshi and Ben Zenker

Answer: 91

Let n = 10. We claim that the sum equals

(n+ 1)

⌊n/2⌋∑
k=0

3n−2k

(
n

2k

)(
2k

k

)
(1)
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Let ω = exp(2πi/(n + 1)). The summand is (ωk + ω−k + 3)n, which by the multinomial
expansion equals

∑
a+b+c=n

(
n

a,b,c

)
3cωk(a−b). Since 0 ≤ |a− b| < n+ 1,

∑n
k=0 = (n+ 1)1a=b.

Therefore the sum becomes

(n+ 1)
∑

a+b+c=n

(
n

a, b, c

)
3n−a−b1a=b = (n+ 1)

n∑
a=0

3n−2a

(
n

a, a, n− 2a

)
(2)

= (n+ 1)

⌊n/2⌋∑
a=0

3n−2a n!

a!a!(n− 2a)!
(3)

= (n+ 1)

⌊n/2⌋∑
a=0

3n−2a

(
n

2a

)(
2a

a

)
, (4)

as claimed.

The desired remainder is therefore

11 ·
[
310

(
10

0

)(
0

0

)
+ 38

(
10

2

)(
2

1

)
+ 36

(
10

4

)(
4

2

)
+ 34

(
10

6

)(
6

3

)
+ 32

(
10

8

)(
8

4

)
+ 30

(
10

10

)(
10

5

)]
(5)

≡ 11 ·
[
310 + 38 · 90 + 36 · 10 · 6 + 34 · 10 · 20 + 32 · 45 · 70 + 52

]
(6)

≡ 91 (mod 100) (7)

8. A polynomial p(x) =
∑2n−1

j=1 ajx
j with real coefficients is called mountainous if n ≥ 2 and there

exists a real number k such that the polynomial’s coefficients satisfy a1 = 1, aj+1 − aj = k for
1 ≤ j ≤ n− 1, and aj+1 − aj = −k for n ≤ j ≤ 2n− 2; we call k the step size of p(x). A real
number k is called good if there exists a mountainous polynomial p(x) with step size k such
that p(−3) = 0. Let S be the sum of all good numbers k satisfying k ≥ 5 or k ≤ 3. If S = b

c
for relatively prime positive integers b, c, find b+ c.

Proposed by Sunay Joshi

Answer: 101

We claim that the only good values of k are k = 7
3 and 61

12 , corresponding to n = 2 and n = 3
respectively. This yields S = 89

12 and an answer of 101.

To see this, note that a generic mountainous polynomial p(x) can be written as

p(x) = (1− k)
x2n − x

x− 1
+ kx

(xn − 1)2

(x− 1)2

if x ̸= 1. This follows from the observation that x2n−x
x−1 = x+ x2 + . . .+ x2n−1 and (xn−1)2

(x−1)2 =

(xn−1 + xn−2 + . . .+ 1)2 = x+ 2x2 + . . .+ nxn + (n− 1)xn+1 + . . .+ x2n−2. Hence p(x) = 0

implies that (1− k)x
2n−x
x−1 + kx (xn−1)2

(x−1)2 = 0. Rearranging and solving for k, we find

k = 1−
xn + 1

xn − 2

xn−1 + 1
xn−1 − 2

As n → ∞, k = k(n) tends to 1− x. In our case x = −3, so the limit equals 4. It follows that
there are only finitely many n such that |k − 4| ≥ 1. Calculating k(n) for n = 2, 3, 4, we find
k(2) = 7/3, k(3) = 61/12.
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We claim that for n ≥ 4, |k(n)− 4| < 1, so that n = 2, 3 are the only valid cases. Note that

|k(n)− 4| =
∣∣∣∣ 8 + 8

(−3)n

(−3)n−1 + 1
(−3)n−1 − 2

∣∣∣∣
We split into the cases when n is even (n ≥ 4) and n is odd (n ≥ 5).

If n is even, then

|k(n)− 4| =
8 + 8

3n

3n−1 + 1
3n−1 + 2

The inequality |k(n)− 4| < 1 is equivalent to 1
33

2n − 6 · 3n − 5 > 0, i.e. 1
3x

2 − 6x− 5 > 0 for
x ≥ 81, which is true.

If n is odd, then

|k(n)− 4| =
8− 8

3n

3n−1 + 1
3n−1 − 2

The inequality |k(n)− 4| < 1 is equivalent to 1
33

2n − 10 · 3n + 11 > 0, i.e. 1
3x

2 − 10x+ 11 > 0
for x ≥ 243, which is true. The result follows.
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