Algebra B

1. Consider the equations $x^{2}+y^{2}=16$ and $x y=\frac{9}{2}$. Find the sum, over all ordered pairs (x, y) satisfying these equations, of $|x+y|$.
2. The sum

$$
\sum_{m=1}^{2023} \frac{2 m}{m^{4}+m^{2}+1}
$$

can be expressed as $\frac{a}{b}$ for relatively prime positive integers a, b. Find the remainder when $a+b$ is divided by 1000 .
3. Let a, b, c, d, e, f be real numbers such that $a^{2}+b^{2}+c^{2}=14, d^{2}+e^{2}+f^{2}=77$, and $a d+b e+c f=$ 32. Find $(b f-c e)^{2}+(c d-a f)^{2}+(a e-b d)^{2}$.
4. If θ is the unique solution in $(0, \pi)$ to the equation $2 \sin (x)+3 \sin \left(\frac{3 x}{2}\right)+\sin (2 x)+3 \sin \left(\frac{5 x}{2}\right)=0$, then $\cos (\theta)=\frac{a-\sqrt{b}}{c}$ for positive integers a, b, c such that a and c are relatively prime. Find $a+b+c$.
5. Let $P(x)$ be a polynomial with integer coefficients satisfying

$$
\left(x^{2}+1\right) P(x-1)=\left(x^{2}-10 x+26\right) P(x)
$$

for all real numbers x. Find the sum of all possible values of $P(0)$ between 1 and 5000 , inclusive.
6. The set of real values of a such that the equation $x^{4}-3 a x^{3}+\left(2 a^{2}+4 a\right) x^{2}-5 a^{2} x+3 a^{2}$ has exactly two nonreal solutions is the set of real numbers between x and y, where $x<y$. If $x+y$ can be written as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m+n$.
7. Compute $\left\lfloor\sum_{k=0}^{10}\left(3+2 \cos \left(\frac{2 \pi k}{11}\right)\right)^{10}\right\rfloor(\bmod 100)$.
8. A polynomial $p(x)=\sum_{j=1}^{2 n-1} a_{j} x^{j}$ with real coefficients is called mountainous if $n \geq 2$ and there exists a real number k such that the polynomial's coefficients satisfy $a_{1}=1, a_{j+1}-a_{j}=k$ for $1 \leq j \leq n-1$, and $a_{j+1}-a_{j}=-k$ for $n \leq j \leq 2 n-2$; we call k the step size of $p(x)$. A real number k is called good if there exists a mountainous polynomial $p(x)$ with step size k such that $p(-3)=0$. Let S be the sum of all good numbers k satisfying $k \geq 5$ or $k \leq 3$. If $S=\frac{b}{c}$ for relatively prime positive integers b, c, find $b+c$.

Name:

Team:

Write answers in table below:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

