## $P \cup M . \therefore$

## Geometry A

1. A circle is inscribed in a regular octagon with area 2024. A second regular octagon is inscribed in the circle, and its area can be expressed as $a+b \sqrt{c}$, where $a, b, c$ are integers and $c$ is square-free. Compute $a+b+c$.
2. Triangle $\triangle A B C$ has $A B=8, A C=10$, and $A D=\sqrt{33}$, where $D$ is the midpoint of $B C$. Perpendiculars are drawn from $D$ to meet $A B$ and $A C$ at $E$ and $F$, respectively. The length of $E F$ can be expressed as $\frac{a \sqrt{b}}{c}$, where $a, c$ are relatively prime and $b$ is square-free. Compute $a+b+c$.
3. Consider a circle centered at $O$. Parallel chords $A B$ of length 8 and $C D$ of length 10 are of distance 2 apart such that $A C<A D$. We can write $\tan \angle B O D=\frac{a}{b}$, where $a, b$ are positive integers such that $\operatorname{gcd}(a, b)=1$. Compute $a+b$.
4. Let $B C D E$ be a trapezoid with $B E \| C D, B E=20, B C=2 \sqrt{34}, C D=8, D E=2 \sqrt{10}$. Draw a line through $E$ parallel to $B D$ and a line through $B$ perpendicular to $B E$, and let $A$ be the intersection of these two lines. Let $M$ be the intersection of diagonals $B D$ and $C E$, and let $X$ be the intersection of $A M$ and $B E$. If $B X$ can be written as $\frac{a}{b}$, where $a, b$ are relatively prime positive integers, find $a+b$.
5. A pentagon has vertices labelled $A, B, C, D, E$ in that order counterclockwise, such that $A B, E D$ are parallel and $\angle E A B=\angle A B D=\angle A C D=\angle C D A$. Furthermore, suppose that $A B=8, A C=12, A E=10$. If the area of triangle $C D E$ can be expressed as $\frac{a \sqrt{b}}{c}$, where $a, b, c$ are integers so that $b$ is square free, and $a, c$ are relatively prime, find $a+b+c$.
6. Three circles, $\omega_{1}, \omega_{2}, \omega_{3}$ are drawn, with $\omega_{3}$ externally tangent to $\omega_{1}$ at $C$ and internally tangent to $\omega_{2}$ at $D$. Say also that $\omega_{1} \omega_{2}$ intersect at points $A, B$. Suppose the radius of $\omega_{1}$ is 20 , the radius of $\omega_{2}$ is 15 , and the radius of $\omega_{3}$ is 6 . Draw line $C D$, and suppose it meets $A B$ at point $X$. If $A B=24$, then $C X$ can be written in the form $\frac{a \sqrt{b}}{c}$, where $a, b, c$ are positive integers where $b$ is square-free, and $a, c$ are relatively prime. Find $a+b+c$.
7. Let $A B C$ be a triangle with side lengths $A B=13, A C=17$, and $B C=20$. Let $E, F$ be the feet of the altitudes from $B$ onto $A C$ and $C$ onto $A B$, respectively. Let $P$ be the second intersection of the circumcircles of $A B C$ and $A E F$. Suppose that $A P$ can be written as $\frac{a \sqrt{b}}{c}$ where $a, c$ are relatively prime and $b$ is square-free. Compute $a$.
8. Let $A B C$ be an acute triangle with side lengths $A B=7, B C=12, A C=10$, and let $\omega$ be its incircle. If $\omega$ is touching $A B, A C$ at $F, E$, respectively, and if $E F$ intersects $B C$ at $X$, suppose that the ratio in which the angle bisector of $\angle B A C$ divides the segment connecting midpoint of $E X$ and $C$ is $\frac{a}{b}$, where $a, b$ are relatively prime integers. Find $a+b$.
