PUM.C

Geometry A

- 1. A circle is inscribed in a regular octagon with area 2024. A second regular octagon is inscribed in the circle, and its area can be expressed as $a + b\sqrt{c}$, where a, b, c are integers and c is square-free. Compute a + b + c.
- 2. Triangle $\triangle ABC$ has AB = 8, AC = 10, and $AD = \sqrt{33}$, where D is the midpoint of BC. Perpendiculars are drawn from D to meet AB and AC at E and F, respectively. The length of EF can be expressed as $\frac{a\sqrt{b}}{c}$, where a, c are relatively prime and b is square-free. Compute a + b + c.
- 3. Consider a circle centered at O. Parallel chords AB of length 8 and CD of length 10 are of distance 2 apart such that AC < AD. We can write $\tan \angle BOD = \frac{a}{b}$, where a, b are positive integers such that gcd(a, b) = 1. Compute a + b.
- 4. Let BCDE be a trapezoid with $BE \parallel CD$, BE = 20, $BC = 2\sqrt{34}$, CD = 8, $DE = 2\sqrt{10}$. Draw a line through E parallel to BD and a line through B perpendicular to BE, and let A be the intersection of these two lines. Let M be the intersection of diagonals BD and CE, and let X be the intersection of AM and BE. If BX can be written as $\frac{a}{b}$, where a, b are relatively prime positive integers, find a + b.
- 5. A pentagon has vertices labelled A, B, C, D, E in that order counterclockwise, such that AB, ED are parallel and $\angle EAB = \angle ABD = \angle ACD = \angle CDA$. Furthermore, suppose that AB = 8, AC = 12, AE = 10. If the area of triangle CDE can be expressed as $\frac{a\sqrt{b}}{c}$, where a, b, c are integers so that b is square free, and a, c are relatively prime, find a + b + c.
- 6. Three circles, $\omega_1, \omega_2, \omega_3$ are drawn, with ω_3 externally tangent to ω_1 at C and internally tangent to ω_2 at D. Say also that $\omega_1\omega_2$ intersect at points A, B. Suppose the radius of ω_1 is 20, the radius of ω_2 is 15, and the radius of ω_3 is 6. Draw line CD, and suppose it meets AB at point X. If AB = 24, then CX can be written in the form $\frac{a\sqrt{b}}{c}$, where a, b, c are positive integers where b is square-free, and a, c are relatively prime. Find a + b + c.
- 7. Let ABC be a triangle with side lengths AB = 13, AC = 17, and BC = 20. Let E, F be the feet of the altitudes from B onto AC and C onto AB, respectively. Let P be the second intersection of the circumcircles of ABC and AEF. Suppose that AP can be written as $\frac{a\sqrt{b}}{c}$ where a, c are relatively prime and b is square-free. Compute a.
- 8. Let ABC be an acute triangle with side lengths AB = 7, BC = 12, AC = 10, and let ω be its incircle. If ω is touching AB, AC at F, E, respectively, and if EF intersects BC at X, suppose that the ratio in which the angle bisector of $\angle BAC$ divides the segment connecting midpoint of EX and C is $\frac{a}{b}$, where a, b are relatively prime integers. Find a + b.