$P \cup M . \therefore$

Geometry B

1. Parallelogram $A B C D$ is given such that $\angle A B C$ equals 30°. Let X be the foot of the perpendicular from A onto $B C$, and Y the foot of the perpendicular from C to $A B$. If $A X=20$ and $C Y=22$, find the area of the parallelogram.
2. A right cylinder is given with a height of 20 and a circular base of radius 5 . A vertical planar cut is made into this base of radius 5 . A vertical planar cut, perpendicular to the base, is made into this cylinder, splitting the cylinder into two pieces. Suppose the area the cut leaves behind on one of the pieces is $100 \sqrt{2}$. Then the volume of the larger piece can be written as $a+b \pi$, where a, b are positive integers. Find $a+b$.
3. A circle is inscribed in a regular octagon with area 2024. A second regular octagon is inscribed in the circle, and its area can be expressed as $a+b \sqrt{c}$, where a, b, c are integers and c is square-free. Compute $a+b+c$.
4. Triangle $\triangle A B C$ has $A B=8, A C=10$, and $A D=\sqrt{33}$, where D is the midpoint of $B C$. Perpendiculars are drawn from D to meet $A B$ and $A C$ at E and F, respectively. The length of $E F$ can be expressed as $\frac{a \sqrt{b}}{c}$, where a, c are relatively prime positive integers and b is square-free. Compute $a+b+c$.
5. Consider a circle centered at O. Parallel chords $A B$ of length 8 and $C D$ of length 10 are of distance 2 apart such that $A C<A D$. We can write $\tan \angle B O D=\frac{a}{b}$, where a, b are positive integers such that $\operatorname{gcd}(a, b)=1$. Compute $a+b$.
6. Let $B C D E$ be a trapezoid with $B E \| C D, B E=20, B C=2 \sqrt{34}, C D=8, D E=2 \sqrt{10}$. Draw a line through E parallel to $B D$ and a line through B perpendicular to $B E$, and let A be the intersection of these two lines. Let M be the intersection of diagonals $B D$ and $C E$, and let X be the intersection of $A M$ and $B E$. If $B X$ can be written as $\frac{a}{b}$, where a, b are relatively prime positive integers, find $a+b$.
7. A pentagon has vertices labelled A, B, C, D, E in that order counterclockwise, such that $A B, E D$ are parallel and $\angle E A B=\angle A B D=\angle A C D=\angle C D A$. Furthermore, suppose that $A B=8, A C=12, A E=10$. If the area of triangle $C D E$ can be expressed as $\frac{a \sqrt{b}}{c}$, where a, b, c are integers so that b is square free, and a, c are relatively prime, find $a+b+c$.
8. Three circles, $\omega_{1}, \omega_{2}, \omega_{3}$ are drawn, with ω_{3} externally tangent to ω_{1} at C and internally tangent to ω_{2} at D. Say also that $\omega_{1} \omega_{2}$ intersect at points A, B. Suppose the radius of ω_{1} is 20 , the radius of ω_{2} is 15 , and the radius of ω_{3} is 6 . Draw line $C D$, and suppose it meets $A B$ at point X. If $A B=24$, then $C X$ can be written in the form $\frac{a \sqrt{b}}{c}$, where a, b, c are positive integers where b is square-free, and a, c are relatively prime. Find $a+b+c$.
