P U M ㄷC

Geometry A

1. Circle Γ is centered at $(0,0)$ in the plane with radius $2022 \sqrt{3}$. Circle Ω is centered on the x-axis, passes through the point $A=(6066,0)$, and intersects Γ orthogonally at the point $P=(x, y)$ with $y>0$. If the length of the minor arc $A P$ on Ω can be expressed as $\frac{m \pi}{n}$ for relatively prime positive integers m, n, find $m+n$.
(Two circles intersect orthogonally at a point P if the tangent lines at P form a right angle.)
2. An ellipse has foci A and B and has the property that there is some point C on the ellipse such that the area of the circle passing through A, B, and, C is equal to the area of the ellipse. Let e be the largest possible eccentricity of the ellipse. One may write e^{2} as $\frac{a+\sqrt{b}}{c}$, where a, b, and c are integers such that a and c are relatively prime, and b is not divisible by the square of any prime. Find $a^{2}+b^{2}+c^{2}$.
3. Daeun draws a unit circle centered at the origin and inscribes within it a regular hexagon $A B C D E F$. Then Dylan chooses a point P within the circle of radius 2 centered at the origin. Let M be the maximum possible value of $|P A| \cdot|P B| \cdot|P C| \cdot|P D| \cdot|P E| \cdot|P F|$, and let N be the number of possible points P for which this maximal value is obtained. Find $M+N^{2}$.
4. Let $\triangle A B C$ be an equilateral triangle. Points D, E, F are drawn on sides $A B, B C$, and $C A$ respectively such that $[A D F]=[B E D]+[C E F]$ and $\triangle A D F \sim \triangle B E D \sim \triangle C E F$. The ratio $\frac{[A B C]}{[D E F]}$ can be expressed as $\frac{a+b \sqrt{c}}{d}$, where a, b, c, and d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find $a+b+c+d$.
(Here $[\mathcal{P}]$ denotes the area of polygon \mathcal{P}.)
5. Let $\triangle A B C$ be a triangle with $A B=5, B C=8$, and, $C A=7$. Let the center of the A-excircle be O, and let the A-excircle touch lines $B C, C A$, and, $A B$ at points X, Y, and, Z, respectively. Let h_{1}, h_{2}, and, h_{3} denote the distances from O to lines $X Y, Y Z$, and, $Z X$, respectively. If $h_{1}^{2}+h_{2}^{2}+h_{3}^{2}$ can be written as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m+n$.
6. Triangle $\triangle A B C$ has sidelengths $A B=10, A C=14$, and, $B C=16$. Circle ω_{1} is tangent to rays $\overrightarrow{A B}, \overrightarrow{A C}$ and passes through B. Circle ω_{2} is tangent to rays $\overrightarrow{A B}, \overrightarrow{A C}$ and passes through C. Let ω_{1}, ω_{2} intersect at points X, Y. The square of the perimeter of triangle $\triangle A X Y$ is equal to $\frac{a+b \sqrt{c}}{d}$, where a, b, c, and, d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find $a+b+c+d$.
7. Let $\triangle A B C$ be a triangle with $B C=7, C A=6$, and, $A B=5$. Let I be the incenter of $\triangle A B C$. Let the incircle of $\triangle A B C$ touch sides $B C, C A$, and $A B$ at points D, E, and F. Let the circumcircle of $\triangle A E F$ meet the circumcircle of $\triangle A B C$ for a second time at point $X \neq A$. Let P denote the intersection of $X I$ and $E F$. If the product $X P \cdot I P$ can be written as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m+n$.
8. Let $\triangle A B C$ have sidelengths $B C=7, C A=8$, and, $A B=9$, and let Ω denote the circumcircle of $\triangle A B C$. Let circles $\omega_{A}, \omega_{B}, \omega_{C}$ be internally tangent to the minor $\operatorname{arcs} \widehat{B C}, \widehat{C A}, \widehat{A B}$ of Ω, respectively, and tangent to the segments $B C, C A, A B$ at points X, Y, and, Z, respectively. Suppose that $\frac{B X}{X C}=\frac{C Y}{Y A}=\frac{A Z}{Z B}=\frac{1}{2}$. Let $t_{A B}$ be the length of the common external tangent of ω_{A} and ω_{B}, let $t_{B C}$ be the length of the common external tangent of ω_{B} and ω_{C}, and let $t_{C A}$ be the length of the common external tangent of ω_{C} and ω_{A}. If $t_{A B}+t_{B C}+t_{C A}$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m+n$.
(Write answers on next page.)

P U M \therefore C

Name:

Team:

Write answers in table below:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

