
Geometry A Solutions

1. Circle Γ is centered at (0, 0) in the plane with radius 2022
√
3. Circle Ω is centered on the

x-axis, passes through the point A = (6066, 0), and intersects Γ orthogonally at the point
P = (x, y) with y > 0. If the length of the minor arc AP on Ω can be expressed as mπ

n for
relatively prime positive integers m,n, find m+ n.

(Two circles are said to intersect orthogonally at a point P if the tangent lines at P form a
right angle.)

Proposed by Sunay Joshi

Answer: 1349

Let O = (0, 0). Let R = 2022
√
3 denote the radius of Γ, so that OA = R

√
3. Let r denote the

radius of Ω. Let Q denote the center of Ω. Since OPQ is a right triangle, PQ =
√
r2 +R2.

Since OA = OQ+QA, we have √
R2 + r2 + r = R

√
3

Solving, we find that r = R/
√
3 = 2022. Therefore ∠OQP = 60◦ and the minor arc AP

corresponds to an interior angle of 120◦. It follows that the desired arclength is given as
1
3 · 2πr = 4044π

3 = 1348π
1 , and our answer is 1348 + 1 = 1349.

2. An ellipse has foci A and B and has the property that there is some point C on the ellipse
such that the area of the circle passing through A, B, and, C is equal to the area of the ellipse.

Let e be the largest possible eccentricity of the ellipse. One may write e2 as a+
√
b

c , where a, b,
and c are integers such that a and c are relatively prime, and b is not divisible by the square
of any prime. Find a2 + b2 + c2.

Proposed by Daniel Carter

Answer: 30

Consider the ellipse with largest possible eccentricity that has this property. The smallest
possible area of the circle is when the center of the circle is the center of the ellipse. Let O be
the center of the ellipse. Then π(OA)2 = πRr, where R, r are the semi-major and semi-minor
axes. We have OA/R = e, so then (OA)e = r. Noting that r2 = R2 − (OA)2, this means

e2 = (1/e2 − 1), or e2 = −1+
√
5

2 . So the answer is (−1)2 + 52 + 22 = 30.

3. Daeun draws a unit circle centered at the origin and inscribes within it a regular hexagon
ABCDEF . Then Dylan chooses a point P within the circle of radius 2 centered at the origin.
Let M be the maximum possible value of |PA| · |PB| · |PC| · |PD| · |PE| · |PF |, and let N be
the number of possible points P for which this maximal value is obtained. Find M +N2.

Proposed by Dylan Epstein-Gross

Answer: 101

Using roots of unity, the product of lengths is

|z − 1||z − a||z − a2| · · · |z − a5| = |z6 − 1|

This is maximized when z6 = −64, which has six solutions with M = 65. Thus the answer is
65 + 62 = 101.

4. Let △ABC be an equilateral triangle. Points D,E, F are drawn on sides AB,BC, and CA
respectively such that [ADF ] = [BED] + [CEF ] and △ADF ∼ △BED ∼ △CEF . The ratio
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[ABC]
[DEF ] can be expressed as a+b

√
c

d , where a, b, c, and d are positive integers such that a and d

are relatively prime, and c is not divisible by the square of any prime. Find a+ b+ c+ d.

(Here [P] denotes the area of polygon P.)

Proposed by Adam Huang

Answer: 17

Assume WLOG that △ABC has sidelength 1. The similarity condition implies DE2+EF 2 =
DF 2, hence ∠DEF = 90. Angle chasing also yields ∠BED = 45, so that △BED,△CEF
are 60-45-75 triangles and △DEF is a 30-60-90 right triangle. By the Law of Sines applied

to △BED and △CEF , the lengths z = DE and x = BE satisfy z
sin 60 = x

sin 75 and z
√
3

sin 60 =
1−x
sin 75 . Solving, we find x =

√
3−1
2 and z = 2

√
6−3

√
2

2 . Thus [DEF ] = z2
√
3

2 and the ratio is

[ABC]/[DEF ] =
√
3/4

z2
√
3/2

, which reduces to 7+4
√
3

3 . Our answer is 7 + 4 + 3 + 3 = 17.

5. Let △ABC be a triangle with AB = 5, BC = 8, and, CA = 7. Let the center of the A-excircle
be O, and let the A-excircle touch lines BC, CA, and, AB at points X, Y , and, Z, respectively.
Let h1, h2, and, h3 denote the distances from O to lines XY , Y Z, and, ZX, respectively. If
h2
1 + h2

2 + h2
3 can be written as m

n for relatively prime positive integers m,n, find m+ n.

Proposed by Sunay Joshi

Answer: 2189

Let a, b, c denote the lengths of sides BC,CA,AB, and let rA denote the radius of the A-

excircle. We claim that h1 =
r2A sin C

2

s−b , h2 =
r2A sin B

2

s−c , and h3 =
r2A cos A

2

s . We begin with

h1. Computing the area of △OXY in two ways, we find 1
2h1 · XY = 1

2r
2
A sinXOY . Since

XY = 2(s− b) cos C
2 and ∠XOY = C, solving the equation for h1 yields the desired formula.

By symmetry, this implies the expression for h3. For h2, we compute the area of △Y OZ in
two ways to find 1

2h2 · Y Z = 1
2r

2
A sinY OZ. Since ∠Y OZ = π −A and Y Z = 2s sin A

2 , solving
the equation for h2 yields the desired formula.

Having established the above, we now compute each of h1, h2, h3. By the Law of Cosines,
cosA = 1

7 , cosB = 1
2 , and cosC = 11

14 . By the half-angle formulae, it follows that cos A
2 = 2√

7
,

sin B
2 = 1

2 , and sin C
2 =

√
3

2
√
7
. Next, since rA(s − a) = K, Heron’s formula implies that

r2A = s(s−b)(s−c)
s−a = 75. Putting everything together, we find that

h2
1 + h2

2 + h2
3 = 752 ·

[
(
2/
√
7

10
)2 + (

√
3/(2

√
7)

3
)2 + (

1/2

5
)2
]
=

2175

14

This gives an answer of m+ n = 2189.

6. Triangle △ABC has sidelengths AB = 10, AC = 14, and, BC = 16. Circle ω1 is tangent to

rays
−−→
AB,

−→
AC and passes through B. Circle ω2 is tangent to rays

−−→
AB,

−→
AC and passes through

C. Let ω1, ω2 intersect at points X,Y . The square of the perimeter of triangle △AXY is equal

to a+b
√
c

d , where a, b, c, and, d are positive integers such that a and d are relatively prime, and
c is not divisible by the square of any prime. Find a+ b+ c+ d.

Proposed by Frank Lu

Answer: 6272

Draw the angle bisector of BAC, which we denote as ℓ. Notice that if O1 is the center of ω1

and O2 is the center of ω2, then we have that O1, O2 lie on this angle bisector. It follows that
this angle bisector must be the perpendicular bisector of XY, since XY is the radical axis of
these two circles.
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We first compute AP. To do this, consider the following operation: first, reflect the diagram
about the angle bisector, then perform an inversion about A of radius

√
10 · 14. (This latter

inversion is referred to sometimes as a root bc inversion). Notice that this operation sends the
circle ω1 to ω2, and sends X to Y. Furthermore, since ℓ is the perpendicular bisector of XY,
we have that AY = AX = 140

AX , meaning that AX =
√
140. To find XP, we need to now find

AP. But this can be done by considering the triangle O1XO2.

We compute the side lengths of this triangle. First, we know that XO1 is the radius of ω1.
We can then compute XO1 by considering the incircle: if the incircle has radius r, and l is the
length of the tangent from A to the incircle, we know that l

r = AB
BO1

= AB
XO1

. But if s is the semi-

perimeter of ABC, we know that l = s−BC = 4, and r is equal to
√

(s−AB)(s−BC)(s−AC)
s =√

10·6·4
20 = 2

√
3. Therefore, we see that XO1 = 5

√
3. Similarly, XO2 = 7

√
3. Finally, we can

then compute that O1O2 = AO2−AO1, which using the Pythagorean theorem is 7
√
7−5

√
7 =

2
√
7.

Therefore, we compute that PO2
2 − PO2

1 = 72. Since this is larger than 2
√
7, we see that our

triangle is obtuse. Thus, we have that O1P + O2P = 36
√
7

7 , and OP2 − OP1 = 2
√
7, which

gives us that O1P = 11
√
7

7 , and so therefore AP = AO1 +O1P = 24
√
7

7 .

From here, we compute that XP 2 = 140 − 576
7 = 404

7 , or that XP = 2
√

101
7 . Therefore, the

perimeter of our triangle is equal to 4
√

101
7 + 4

√
35 =

√
1616+

√
3920√

7
. Therefore the square of

the perimeter is 5536+224
√
505

7 , so our answer is a+ b+ c+ d = 5536 + 224 + 505 + 7 = 6272.

7. Let △ABC be a triangle with BC = 7, CA = 6, and, AB = 5. Let I be the incenter of
△ABC. Let the incircle of △ABC touch sides BC,CA, and AB at points D,E, and F . Let
the circumcircle of △AEF meet the circumcircle of △ABC for a second time at point X ̸= A.
Let P denote the intersection of XI and EF . If the product XP · IP can be written as m

n for
relatively prime positive integers m,n, find m+ n.

Proposed by Sunay Joshi

Answer: 629

We begin by performing a general calculation. Consider a generic triangle △ABC. Let D
denote the foot of the altitude from A to BC. Let O denote the circumcenter of △ABC and
letM denote the midpoint of BC. We will compute the lengths BD, DE, andDO. It is easy to

see that BD = c cosB = a2+c2−b2

2a and DE = b cosC = a2+b2−c2

2a by the law of cosines. Next,
the Pythagorean Theorem applied to △OMD yields OD2 = OM2 + BM2, or equivalently

OD2 = (a2 −c cosB)2+(R2−(a2 )
2). By the law of cosines, a

2 −c cosB = a2

2a−
a2+c2−b2

2a = b2−c2

2a .

Therefore OD =
√
( b

2−c2

2a )2 + (R2 − (a2 )
2).

Returning to the problem, the key fact is that P is the foot of the altitude from D to EF . This
can be seen by inverting about the incircle of △ABC. Next, by power of a point, the desired
product is XP ·IP = PE ·PF . Note that I is the circumcenter of △DEF . It therefore suffices
to evaluate the distances computed in the first paragraph of this solution, for the triangle
△DEF . Let x, y, z denote the lengths EF,FD,DE and r denote the inradius of △ABC. Note

that x = 2(s− a) sin A
2 , and similarly for y, z. Note that sin A

2 =
√

1−cosA
2 =

√
a2−(b−c)2

4bc , and

similarly for sin B
2 , sin

C
2 .

We now compute. Note that a = 7, b = 6, c = 5, so that s = 9, s− a = 2, s− b = 3, s− c = 4.
The area of △ABC is rs =

√
9 · 2 · 3 · 4, so the inradius is r = 6

√
6/9 = 2

√
6/3. Next, note
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that sin A
2 =

√
72−12

4·6·5 =
√

2
5 , sin

B
2 =

√
62−22

4·7·5 =
√

8
35 , sin

C
2 =

√
52−12

4·6·7 =
√

1
7 . Therefore

x = 2 · 2 ·
√

2
5 , y = 2 · 3 ·

√
8
35 , z = 2 · 4 ·

√
1
7 , and so x2 = 224

35 , y2 = 288
35 , z2 = 320

35 . 2x = 8
√
10
5 .

Plugging the above into our formulae, we see that PE = x2+z2−y2

2x = 256/35

8
√
10/5

and PF =

x2+y2−z2

2x = 192/35

8
√
10/5

. Also, IP =
√
(y

2−z2

2x )2 + (r2 − (x2 )
2) =

√
( 32/35

8
√
10/5

)2 + ( 83 − 56
35 ) =

√
( 4
7
√
10
)2 + ( 1615 ) =√

16
490 + 16

15 = 2
√
3030
105 . Therefore the desired product is

XP · IP = PE · PF =
256/35

8
√
10/5

· 192/35

8
√
10/5

=
384

245

and our final answer is 384 + 245 = 629.

8. Let △ABC have sidelengths BC = 7, CA = 8, and, AB = 9, and let Ω denote the circumcircle
of △ABC. Let circles ωA, ωB , ωC be internally tangent to the minor arcs BC,CA,AB of Ω,
respectively, and tangent to the segments BC,CA,AB at points X,Y, and, Z, respectively.
Suppose that BX

XC = CY
Y A = AZ

ZB = 1
2 . Let tAB be the length of the common external tangent

of ωA and ωB , let tBC be the length of the common external tangent of ωB and ωC , and let
tCA be the length of the common external tangent of ωC and ωA. If tAB + tBC + tCA can be
expressed as m

n for relatively prime positive integers m,n, find m+ n.

Proposed by Sunay Joshi

Answer: 59

Let k = BX
BC = 1

3 . First, we show that tAB = (1−k)2a+k2b+(1−k)kc. Let tA, tB , tC denote the
length of the tangent from A,B,C to ωA, ωB , ωC , respectively. By Casey’s Theorem applied
to circles (A), (B), ωA, (C), we find that c · CX + b · BX = a · tA. Since CX = (1 − k)a
and BX = ka, solving yields tA = kb + (1 − k)c. By symmetry we find tB = kc + (1 − k)a.
Applying Casey’s Theorem to circles (A), (B), ωA, ωB , we find c · tAB + AY · BX = tA · tB .
Since AY = (1− k)b and BX = ka, solving yields the claimed expression for tAB .

By symmetry, we therefore have tBC = (1−k)2b+k2c+(1−k)ka and tCA = (1−k)2c+k2a+(1−
k)kb. Summing yields tAB+tBC+tCA = ((1−k)2+k2+(1−k)k)(a+b+c) = (k2−k+1)(a+b+c).
Plugging in k = 1

3 and a = 7, b = 8, c = 9, we find 7
9 ·24 = 56

3 and hence an answer of 56+3 = 59.
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