Geometry A Solutions

1. Circle Γ is centered at $(0,0)$ in the plane with radius $2022 \sqrt{3}$. Circle Ω is centered on the x-axis, passes through the point $A=(6066,0)$, and intersects Γ orthogonally at the point $P=(x, y)$ with $y>0$. If the length of the minor arc $A P$ on Ω can be expressed as $\frac{m \pi}{n}$ for relatively prime positive integers m, n, find $m+n$.
(Two circles are said to intersect orthogonally at a point P if the tangent lines at P form a right angle.)

Proposed by Sunay Joshi

Answer: 1349
Let $O=(0,0)$. Let $R=2022 \sqrt{3}$ denote the radius of Γ, so that $O A=R \sqrt{3}$. Let r denote the radius of Ω. Let Q denote the center of Ω. Since $O P Q$ is a right triangle, $P Q=\sqrt{r^{2}+R^{2}}$. Since $O A=O Q+Q A$, we have

$$
\sqrt{R^{2}+r^{2}}+r=R \sqrt{3}
$$

Solving, we find that $r=R / \sqrt{3}=2022$. Therefore $\angle O Q P=60^{\circ}$ and the minor arc $A P$ corresponds to an interior angle of 120°. It follows that the desired arclength is given as $\frac{1}{3} \cdot 2 \pi r=\frac{4044 \pi}{3}=\frac{1348 \pi}{1}$, and our answer is $1348+1=1349$.
2. An ellipse has foci A and B and has the property that there is some point C on the ellipse such that the area of the circle passing through A, B, and, C is equal to the area of the ellipse. Let e be the largest possible eccentricity of the ellipse. One may write e^{2} as $\frac{a+\sqrt{b}}{c}$, where a, b, and c are integers such that a and c are relatively prime, and b is not divisible by the square of any prime. Find $a^{2}+b^{2}+c^{2}$.

Proposed by Daniel Carter

Answer: 30
Consider the ellipse with largest possible eccentricity that has this property. The smallest possible area of the circle is when the center of the circle is the center of the ellipse. Let O be the center of the ellipse. Then $\pi(O A)^{2}=\pi R r$, where R, r are the semi-major and semi-minor axes. We have $O A / R=e$, so then $(O A) e=r$. Noting that $r^{2}=R^{2}-(O A)^{2}$, this means $e^{2}=\left(1 / e^{2}-1\right)$, or $e^{2}=\frac{-1+\sqrt{5}}{2}$. So the answer is $(-1)^{2}+5^{2}+2^{2}=30$.
3. Daeun draws a unit circle centered at the origin and inscribes within it a regular hexagon $A B C D E F$. Then Dylan chooses a point P within the circle of radius 2 centered at the origin. Let M be the maximum possible value of $|P A| \cdot|P B| \cdot|P C| \cdot|P D| \cdot|P E| \cdot|P F|$, and let N be the number of possible points P for which this maximal value is obtained. Find $M+N^{2}$.
Proposed by Dylan Epstein-Gross
Answer: 101
Using roots of unity, the product of lengths is

$$
|z-1||z-a|\left|z-a^{2}\right| \cdots\left|z-a^{5}\right|=\left|z^{6}-1\right|
$$

This is maximized when $z^{6}=-64$, which has six solutions with $M=65$. Thus the answer is $65+6^{2}=101$.
4. Let $\triangle A B C$ be an equilateral triangle. Points D, E, F are drawn on sides $A B, B C$, and $C A$ respectively such that $[A D F]=[B E D]+[C E F]$ and $\triangle A D F \sim \triangle B E D \sim \triangle C E F$. The ratio

$P \cup M \therefore C$

$\frac{[A B C]}{[D E F]}$ can be expressed as $\frac{a+b \sqrt{c}}{d}$, where a, b, c, and d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find $a+b+c+d$.
$($ Here $[\mathcal{P}]$ denotes the area of polygon \mathcal{P}.)
Proposed by Adam Huang
Answer: 17
Assume WLOG that $\triangle A B C$ has sidelength 1. The similarity condition implies $D E^{2}+E F^{2}=$ $D F^{2}$, hence $\angle D E F=90$. Angle chasing also yields $\angle B E D=45$, so that $\triangle B E D, \triangle C E F$ are 60-45-75 triangles and $\triangle D E F$ is a 30-60-90 right triangle. By the Law of Sines applied to $\triangle B E D$ and $\triangle C E F$, the lengths $z=D E$ and $x=B E$ satisfy $\frac{z}{\sin 60}=\frac{x}{\sin 75}$ and $\frac{z \sqrt{3}}{\sin 60}=$ $\frac{1-x}{\sin 75}$. Solving, we find $x=\frac{\sqrt{3}-1}{2}$ and $z=\frac{2 \sqrt{6}-3 \sqrt{2}}{2}$. Thus $[D E F]=\frac{z^{2} \sqrt{3}}{2}$ and the ratio is $[A B C] /[D E F]=\frac{\sqrt{3} / 4}{z^{2} \sqrt{3} / 2}$, which reduces to $\frac{7+4 \sqrt{3}}{3}$. Our answer is $7+4+3+3=17$.
5. Let $\triangle A B C$ be a triangle with $A B=5, B C=8$, and, $C A=7$. Let the center of the A-excircle be O, and let the A-excircle touch lines $B C, C A$, and, $A B$ at points X, Y, and, Z, respectively. Let h_{1}, h_{2}, and, h_{3} denote the distances from O to lines $X Y, Y Z$, and, $Z X$, respectively. If $h_{1}^{2}+h_{2}^{2}+h_{3}^{2}$ can be written as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m+n$.
Proposed by Sunay Joshi
Answer: 2189
Let a, b, c denote the lengths of sides $B C, C A, A B$, and let r_{A} denote the radius of the A excircle. We claim that $h_{1}=\frac{r_{A}^{2} \sin \frac{C}{2}}{s-b}, h_{2}=\frac{r_{A}^{2} \sin \frac{B}{2}}{s-c}$, and $h_{3}=\frac{r_{A}^{2} \cos \frac{A}{2}}{s}$. We begin with h_{1}. Computing the area of $\triangle O X Y$ in two ways, we find $\frac{1}{2} h_{1} \cdot X Y=\frac{1}{2} r_{A}^{2} \sin X O Y$. Since $X Y=2(s-b) \cos \frac{C}{2}$ and $\angle X O Y=C$, solving the equation for h_{1} yields the desired formula. By symmetry, this implies the expression for h_{3}. For h_{2}, we compute the area of $\triangle Y O Z$ in two ways to find $\frac{1}{2} h_{2} \cdot Y Z=\frac{1}{2} r_{A}^{2} \sin Y O Z$. Since $\angle Y O Z=\pi-A$ and $Y Z=2 s \sin \frac{A}{2}$, solving the equation for h_{2} yields the desired formula.

Having established the above, we now compute each of h_{1}, h_{2}, h_{3}. By the Law of Cosines, $\cos A=\frac{1}{7}, \cos B=\frac{1}{2}$, and $\cos C=\frac{11}{14}$. By the half-angle formulae, it follows that $\cos \frac{A}{2}=\frac{2}{\sqrt{7}}$, $\sin \frac{B}{2}=\frac{1}{2}$, and $\sin \frac{C}{2}=\frac{\sqrt{3}}{2 \sqrt{7}}$. Next, since $r_{A}(s-a)=K$, Heron's formula implies that $r_{A}^{2}=\frac{s(s-b)(s-c)}{s-a}=75$. Putting everything together, we find that

$$
h_{1}^{2}+h_{2}^{2}+h_{3}^{2}=75^{2} \cdot\left[\left(\frac{2 / \sqrt{7}}{10}\right)^{2}+\left(\frac{\sqrt{3} /(2 \sqrt{7})}{3}\right)^{2}+\left(\frac{1 / 2}{5}\right)^{2}\right]=\frac{2175}{14}
$$

This gives an answer of $m+n=2189$.
6. Triangle $\triangle A B C$ has sidelengths $A B=10, A C=14$, and, $B C=16$. Circle ω_{1} is tangent to rays $\overrightarrow{A B}, \overrightarrow{A C}$ and passes through B. Circle ω_{2} is tangent to rays $\overrightarrow{A B}, \overrightarrow{A C}$ and passes through C. Let ω_{1}, ω_{2} intersect at points X, Y. The square of the perimeter of triangle $\triangle A X Y$ is equal to $\frac{a+b \sqrt{c}}{d}$, where a, b, c, and, d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find $a+b+c+d$.

Proposed by Frank Lu

Answer: 6272
Draw the angle bisector of $B A C$, which we denote as ℓ. Notice that if O_{1} is the center of ω_{1} and O_{2} is the center of ω_{2}, then we have that O_{1}, O_{2} lie on this angle bisector. It follows that this angle bisector must be the perpendicular bisector of $X Y$, since $X Y$ is the radical axis of these two circles.

We first compute $A P$. To do this, consider the following operation: first, reflect the diagram about the angle bisector, then perform an inversion about A of radius $\sqrt{10 \cdot 14}$. (This latter inversion is referred to sometimes as a root bc inversion). Notice that this operation sends the circle ω_{1} to ω_{2}, and sends X to Y. Furthermore, since ℓ is the perpendicular bisector of $X Y$, we have that $A Y=A X=\frac{140}{A X}$, meaning that $A X=\sqrt{140}$. To find $X P$, we need to now find $A P$. But this can be done by considering the triangle $O_{1} X O_{2}$.

We compute the side lengths of this triangle. First, we know that $X O_{1}$ is the radius of ω_{1}. We can then compute $X O_{1}$ by considering the incircle: if the incircle has radius r, and l is the length of the tangent from A to the incircle, we know that $\frac{l}{r}=\frac{A B}{B O_{1}}=\frac{A B}{X O_{1}}$. But if s is the semiperimeter of $A B C$, we know that $l=s-B C=4$, and r is equal to $\sqrt{\frac{(s-A B)(s-B C)(s-A C)}{s}}=$ $\sqrt{\frac{10 \cdot 6 \cdot 4}{20}}=2 \sqrt{3}$. Therefore, we see that $X O_{1}=5 \sqrt{3}$. Similarly, $X O_{2}=7 \sqrt{3}$. Finally, we can then compute that $O_{1} O_{2}=A O_{2}-A O_{1}$, which using the Pythagorean theorem is $7 \sqrt{7}-5 \sqrt{7}=$ $2 \sqrt{7}$.
Therefore, we compute that $P O_{2}^{2}-P O_{1}^{2}=72$. Since this is larger than $2 \sqrt{7}$, we see that our triangle is obtuse. Thus, we have that $O_{1} P+O_{2} P=\frac{36 \sqrt{7}}{7}$, and $O P_{2}-O P_{1}=2 \sqrt{7}$, which gives us that $O_{1} P=\frac{11 \sqrt{7}}{7}$, and so therefore $A P=A O_{1}+O_{1} P=\frac{24 \sqrt{7}}{7}$.
From here, we compute that $X P^{2}=140-\frac{576}{7}=\frac{404}{7}$, or that $X P=2 \sqrt{\frac{101}{7}}$. Therefore, the perimeter of our triangle is equal to $4 \sqrt{\frac{101}{7}}+4 \sqrt{35}=\frac{\sqrt{1616}+\sqrt{3920}}{\sqrt{7}}$. Therefore the square of the perimeter is $\frac{5536+224 \sqrt{505}}{7}$, so our answer is $a+b+c+d=5536+224+505+7=6272$.
7. Let $\triangle A B C$ be a triangle with $B C=7, C A=6$, and, $A B=5$. Let I be the incenter of $\triangle A B C$. Let the incircle of $\triangle A B C$ touch sides $B C, C A$, and $A B$ at points D, E, and F. Let the circumcircle of $\triangle A E F$ meet the circumcircle of $\triangle A B C$ for a second time at point $X \neq A$. Let P denote the intersection of $X I$ and $E F$. If the product $X P \cdot I P$ can be written as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m+n$.
Proposed by Sunay Joshi
Answer: 629
We begin by performing a general calculation. Consider a generic triangle $\triangle A B C$. Let D denote the foot of the altitude from A to $B C$. Let O denote the circumcenter of $\triangle A B C$ and let M denote the midpoint of $B C$. We will compute the lengths $B D, D E$, and $D O$. It is easy to see that $B D=c \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a}$ and $D E=b \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a}$ by the law of cosines. Next, the Pythagorean Theorem applied to $\triangle O M D$ yields $O D^{2}=O M^{2}+B M^{2}$, or equivalently $O D^{2}=\left(\frac{a}{2}-c \cos B\right)^{2}+\left(R^{2}-\left(\frac{a}{2}\right)^{2}\right)$. By the law of cosines, $\frac{a}{2}-c \cos B=\frac{a^{2}}{2 a}-\frac{a^{2}+c^{2}-b^{2}}{2 a}=\frac{b^{2}-c^{2}}{2 a}$. Therefore $O D=\sqrt{\left(\frac{b^{2}-c^{2}}{2 a}\right)^{2}+\left(R^{2}-\left(\frac{a}{2}\right)^{2}\right)}$.
Returning to the problem, the key fact is that P is the foot of the altitude from D to $E F$. This can be seen by inverting about the incircle of $\triangle A B C$. Next, by power of a point, the desired product is $X P \cdot I P=P E \cdot P F$. Note that I is the circumcenter of $\triangle D E F$. It therefore suffices to evaluate the distances computed in the first paragraph of this solution, for the triangle $\triangle D E F$. Let x, y, z denote the lengths $E F, F D, D E$ and r denote the inradius of $\triangle A B C$. Note that $x=2(s-a) \sin \frac{A}{2}$, and similarly for y, z. Note that $\sin \frac{A}{2}=\sqrt{\frac{1-\cos A}{2}}=\sqrt{\frac{a^{2}-(b-c)^{2}}{4 b c}}$, and similarly for $\sin \frac{B}{2}, \sin \frac{C}{2}$.
We now compute. Note that $a=7, b=6, c=5$, so that $s=9, s-a=2, s-b=3, s-c=4$. The area of $\triangle A B C$ is $r s=\sqrt{9 \cdot 2 \cdot 3 \cdot 4}$, so the inradius is $r=6 \sqrt{6} / 9=2 \sqrt{6} / 3$. Next, note
that $\sin \frac{A}{2}=\sqrt{\frac{7^{2}-1^{2}}{4 \cdot 6 \cdot 5}}=\sqrt{\frac{2}{5}}, \sin \frac{B}{2}=\sqrt{\frac{6^{2}-2^{2}}{4 \cdot 7 \cdot 5}}=\sqrt{\frac{8}{35}}, \sin \frac{C}{2}=\sqrt{\frac{5^{2}-1^{2}}{4 \cdot 6 \cdot 7}}=\sqrt{\frac{1}{7}}$. Therefore $x=2 \cdot 2 \cdot \sqrt{\frac{2}{5}}, y=2 \cdot 3 \cdot \sqrt{\frac{8}{35}}, z=2 \cdot 4 \cdot \sqrt{\frac{1}{7}}$, and so $x^{2}=\frac{224}{35}, y^{2}=\frac{288}{35}, z^{2}=\frac{320}{35} \cdot 2 x=\frac{8 \sqrt{10}}{5}$.
Plugging the above into our formulae, we see that $P E=\frac{x^{2}+z^{2}-y^{2}}{2 x}=\frac{256 / 35}{8 \sqrt{10} / 5}$ and $P F=$ $\frac{x^{2}+y^{2}-z^{2}}{2 x}=\frac{192 / 35}{8 \sqrt{10} / 5}$. Also, $I P=\sqrt{\left(\frac{y^{2}-z^{2}}{2 x}\right)^{2}+\left(r^{2}-\left(\frac{x}{2}\right)^{2}\right)}=\sqrt{\left(\frac{32 / 35}{8 \sqrt{10} / 5}\right)^{2}+\left(\frac{8}{3}-\frac{56}{35}\right)}=\sqrt{\left(\frac{4}{7 \sqrt{10}}\right)^{2}+\left(\frac{16}{15}\right)}=$ $\sqrt{\frac{16}{490}+\frac{16}{15}}=\frac{2 \sqrt{3030}}{105}$. Therefore the desired product is

$$
X P \cdot I P=P E \cdot P F=\frac{256 / 35}{8 \sqrt{10} / 5} \cdot \frac{192 / 35}{8 \sqrt{10} / 5}=\frac{384}{245}
$$

and our final answer is $384+245=629$.
8. Let $\triangle A B C$ have sidelengths $B C=7, C A=8$, and, $A B=9$, and let Ω denote the circumcircle of $\triangle A B C$. Let circles $\omega_{A}, \omega_{B}, \omega_{C}$ be internally tangent to the minor arcs $\overline{B C}, \overline{C A}, \overline{A B}$ of Ω, respectively, and tangent to the segments $B C, C A, A B$ at points X, Y, and, Z, respectively. Suppose that $\frac{B X}{X C}=\frac{C Y}{Y A}=\frac{A Z}{Z B}=\frac{1}{2}$. Let $t_{A B}$ be the length of the common external tangent of ω_{A} and ω_{B}, let $t_{B C}$ be the length of the common external tangent of ω_{B} and ω_{C}, and let $t_{C A}$ be the length of the common external tangent of ω_{C} and ω_{A}. If $t_{A B}+t_{B C}+t_{C A}$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m+n$.
Proposed by Sunay Joshi
Answer: 59
Let $k=\frac{B X}{B C}=\frac{1}{3}$. First, we show that $t_{A B}=(1-k)^{2} a+k^{2} b+(1-k) k c$. Let t_{A}, t_{B}, t_{C} denote the length of the tangent from A, B, C to $\omega_{A}, \omega_{B}, \omega_{C}$, respectively. By Casey's Theorem applied to circles $(A),(B), \omega_{A},(C)$, we find that $c \cdot C X+b \cdot B X=a \cdot t_{A}$. Since $C X=(1-k) a$ and $B X=k a$, solving yields $t_{A}=k b+(1-k) c$. By symmetry we find $t_{B}=k c+(1-k) a$. Applying Casey's Theorem to circles $(A),(B), \omega_{A}, \omega_{B}$, we find $c \cdot t_{A B}+A Y \cdot B X=t_{A} \cdot t_{B}$. Since $A Y=(1-k) b$ and $B X=k a$, solving yields the claimed expression for $t_{A B}$.
By symmetry, we therefore have $t_{B C}=(1-k)^{2} b+k^{2} c+(1-k) k a$ and $t_{C A}=(1-k)^{2} c+k^{2} a+(1-$ $k) k b$. Summing yields $t_{A B}+t_{B C}+t_{C A}=\left((1-k)^{2}+k^{2}+(1-k) k\right)(a+b+c)=\left(k^{2}-k+1\right)(a+b+c)$. Plugging in $k=\frac{1}{3}$ and $a=7, b=8, c=9$, we find $\frac{7}{9} \cdot 24=\frac{56}{3}$ and hence an answer of $56+3=59$.

