PUM.C

Geometry A

- 1. Define a common chord between two intersecting circles to be the line segment connecting their two intersection points. Let $\omega_1, \omega_2, \omega_3$ be three circles of radii 3, 5, and 7, respectively. Suppose they are arranged in such a way that the common chord of ω_1 and ω_2 is a diameter of ω_1 , the common chord of ω_1 and ω_3 is a diameter of ω_1 , and the common chord of ω_2 and ω_3 is a diameter of ω_2 . Compute the square of the area of the triangle formed by the centers of the three circles.
- 2. Let $\triangle ABC$ be an isosceles triangle with $AB = AC = \sqrt{7}$ and BC = 1. Let G be the centroid of $\triangle ABC$. Given $j \in \{0, 1, 2\}$, let T_j denote the triangle obtained by rotating $\triangle ABC$ about G by $2\pi j/3$ radians. Let \mathcal{P} denote the intersection of the interiors of triangles T_0, T_1, T_2 . If K denotes the area of \mathcal{P} , then $K^2 = \frac{a}{b}$ for relatively prime positive integers a, b. Find a + b.
- 3. Let $\triangle ABC$ be a triangle with AB = 13, BC = 14, and CA = 15. Let D, E, and F be the midpoints of AB, BC, and CA respectively. Imagine cutting $\triangle ABC$ out of paper and then folding $\triangle AFD$ up along FD, folding $\triangle BED$ up along DE, and folding $\triangle CEF$ up along EF until A, B, and C coincide at a point G. The volume of the tetrahedron formed by vertices D, E, F, and G can be expressed as $\frac{p\sqrt{q}}{r}$, where p, q, and r are positive integers, p and r are relatively prime, and q is square-free. Find p + q + r.
- 4. Let $\triangle ABC$ be a triangle with AB = 4, BC = 6, and CA = 5. Let the angle bisector of $\angle BAC$ intersect BC at the point D and the circumcircle of $\triangle ABC$ again at the point $M \neq A$. The perpendicular bisector of segment DM intersects the circle centered at M passing through B at two points, X and Y. Compute $AX \cdot AY$.
- 5. Let $\triangle ABC$ have AB = 15, AC = 20, and BC = 21. Suppose ω is a circle passing through A that is tangent to segment BC. Let point $D \neq A$ be the second intersection of AB with ω , and let point $E \neq A$ be the second intersection of AC with ω . Suppose DE is parallel to BC. If $DE = \frac{a}{b}$, where a, b are relatively prime positive integers, find a + b.
- 6. Let $\triangle ABC$ have AB = 14, BC = 30, AC = 40 and $\triangle AB'C'$ with $AB' = 7\sqrt{6}$, $B'C' = 15\sqrt{6}$, $AC' = 20\sqrt{6}$ such that $\angle BAB' = \frac{5\pi}{12}$. The lines BB' and CC' intersect at point D. Let O be the circumcenter of $\triangle BCD$, and let O' be the circumcenter of $\triangle B'C'D$. Then the length of segment OO' can be expressed as $\frac{a+b\sqrt{c}}{d}$, where a, b, c, and d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find a+b+c+d.
- 7. Let $\triangle ABC$ be a triangle with $\angle BAC = 90^{\circ}$, $\angle ABC = 60^{\circ}$, and $\angle BCA = 30^{\circ}$ and BC = 4. Let the incircle of $\triangle ABC$ meet sides BC, CA, AB at points A_0, B_0, C_0 , respectively. Let $\omega_A, \omega_B, \omega_C$ denote the circumcircles of triangles $\triangle B_0 IC_0, \triangle C_0 IA_0, \triangle A_0 IB_0$, respectively. We construct triangle T_A as follows: let A_0B_0 meet ω_B for the second time at $A_1 \neq A_0$, let A_0C_0 meet ω_C for the second time at $A_2 \neq A_0$, and let T_A denote the triangle $\triangle A_0A_1A_2$. Construct triangles T_B, T_C similarly. If the sum of the areas of triangles T_A, T_B, T_C equals $\sqrt{m} - n$ for positive integers m, n, find m + n.
- 8. Similar to the last 6 problems, let $\triangle ABC$ be a triangle with AB = 4 and $AC = \frac{7}{2}$. Let ω denote the A-excircle of $\triangle ABC$. Let ω touch lines AB, AC at the points D, E, respectively. Let Ω denote the circumcircle of $\triangle ADE$. Consider the line ℓ parallel to BC such that ℓ is tangent to ω at a point F and such that ℓ does not intersect Ω . Let ℓ intersect lines AB, AC at the points X, Y, respectively, with XY = 18 and AX = 16. Let the perpendicular bisector of XY meet the circumcircle of $\triangle AXY$ at P, Q, where the distance from P to F is smaller than the distance from Q to F. Let ray \overrightarrow{PF} meet Ω for the first time at the point Z. If $PZ^2 = \frac{m}{n}$ for relatively prime positive integers m, n, find m + n.

(Write answers on next page.) Name:

Team:

Write answers in table below:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8