# PUM.C



## Geometry B

- 1. A triangle  $\triangle ABC$  is situated on the plane and a point *E* is given on segment *AC*. Let *D* be a point in the plane such that lines *AD* and *BE* are parallel. Suppose that  $\angle EBC = 25^{\circ}, \angle BCA = 32^{\circ}$ , and  $\angle CAB = 60^{\circ}$ . Find the smallest possible value of  $\angle DAB$  in degrees.
- 2. Three spheres are all externally tangent to a plane and to each other. Suppose that the radii of these spheres are 6, 8, and, 10. The tangency points of these spheres with the plane form the vertices of a triangle. Determine the largest integer that is smaller than the perimeter of this triangle.
- 3. Circle  $\Gamma$  is centered at (0,0) in the plane with radius  $2022\sqrt{3}$ . Circle  $\Omega$  is centered on the *x*-axis, passes through the point A = (6066, 0), and intersects  $\Gamma$  orthogonally at the point P = (x, y) with y > 0. If the length of the minor arc AP on  $\Omega$  can be expressed as  $\frac{m\pi}{n}$  for relatively prime positive integers m, n, find m + n.

(Two circles intersect *orthogonally* at a point P if the tangent lines at P form a right angle.)

- 4. An ellipse has foci A and B and has the property that there is some point C on the ellipse such that the area of the circle passing through A, B, and, C is equal to the area of the ellipse. Let e be the largest possible eccentricity of the ellipse. One may write  $e^2$  as  $\frac{a+\sqrt{b}}{c}$ , where a, b, and c are integers such that a and c are relatively prime, and b is not divisible by the square of any prime. Find  $a^2 + b^2 + c^2$ .
- 5. Daeun draws a unit circle centered at the origin and inscribes within it a regular hexagon ABCDEF. Then Dylan chooses a point P within the circle of radius 2 centered at the origin. Let M be the maximum possible value of  $|PA| \cdot |PB| \cdot |PC| \cdot |PD| \cdot |PE| \cdot |PF|$ , and let N be the number of possible points P for which this maximal value is obtained. Find  $M + N^2$ .
- 6. Let  $\triangle ABC$  be an equilateral triangle. Points D, E, F are drawn on sides AB, BC, and CA respectively such that [ADF] = [BED] + [CEF] and  $\triangle ADF \sim \triangle BED \sim \triangle CEF$ . The ratio  $\frac{[ABC]}{[DEF]}$  can be expressed as  $\frac{a+b\sqrt{c}}{d}$ , where a, b, c, and d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find a+b+c+d.

(Here  $[\mathcal{P}]$  denotes the area of polygon  $\mathcal{P}$ .)

- 7. Let △ABC be a triangle with AB = 5, BC = 8, and, CA = 7. Let the center of the A-excircle be O, and let the A-excircle touch lines BC, CA, and, AB at points X, Y, and, Z, respectively. Let h<sub>1</sub>, h<sub>2</sub>, and, h<sub>3</sub> denote the distances from O to lines XY, YZ, and, ZX, respectively. If h<sub>1</sub><sup>2</sup> + h<sub>2</sub><sup>2</sup> + h<sub>3</sub><sup>2</sup> can be written as m/n for relatively prime positive integers m, n, find m + n.
- 8. Triangle  $\triangle ABC$  has sidelengths AB = 10, AC = 14, and, BC = 16. Circle  $\omega_1$  is tangent to rays  $\overrightarrow{AB}, \overrightarrow{AC}$  and passes through B. Circle  $\omega_2$  is tangent to rays  $\overrightarrow{AB}, \overrightarrow{AC}$  and passes through C. Let  $\omega_1, \omega_2$  intersect at points X, Y. The square of the perimeter of triangle  $\triangle AXY$  is equal to  $\frac{a+b\sqrt{c}}{d}$ , where a, b, c, and, d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find a + b + c + d.

(Write answers on next page.)





#### Name:

### Team:

#### Write answers in table below:

| Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | $\mathbf{Q8}$ |
|----|----|----|----|----|----|----|---------------|
|    |    |    |    |    |    |    |               |
|    |    |    |    |    |    |    |               |