Geometry B Solutions

1. A triangle $\triangle A B C$ is situated on the plane and a point E is given on segment $A C$. Let D be a point in the plane such that lines $A D$ and $B E$ are parallel. Suppose that $\angle E B C=$ $25^{\circ}, \angle B C A=32^{\circ}$, and $\angle C A B=60^{\circ}$. Find the smallest possible value of $\angle D A B$ in degrees.
Proposed by Frank Lu
Answer: 63
First, using the angles that we are given, we can compute that $\angle B E C=180^{\circ}-57^{\circ}=123^{\circ}$. From here, we have two cases, depending on the positioning of D. In the first case, we have that $\angle D A C=\angle B E C$ (rays $B E$ and $A D$ point in opposite directions). In this case, we have $\angle D A C=123^{\circ}$, meaning that $\angle D A B=\angle D A C-\angle D A B=63^{\circ}$.
In the second case, $\angle D A C=180^{\circ}-\angle B E C=57^{\circ}$, with rays $B E, A D$ pointing the same way. In this case, we have that $\angle D A B=\angle D A C+\angle C A B=117^{\circ}$. Notice that of these cases, the smallest value is 63°, which gives us our answer.
2. Three spheres are all externally tangent to a plane and to each other. Suppose that the radii of these spheres are 6,8 , and, 10 . The tangency points of these spheres with the plane form the vertices of a triangle. Determine the largest integer that is smaller than the perimeter of this triangle.

Proposed by Frank Lu

Answer: 47
Suppose that the centers of the spheres are O_{1}, O_{2}, O_{3}, with the respective tangency points to the planes being A_{1}, A_{2}, A_{3}, so that the sphere centered at O_{1} has radius 6 , the sphere centered at O_{2} has radius 8 , and the sphere centered at O_{3} has radius 10 . Our goal will to be to compute $A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{1}$. We go through the computation for $A_{1} A_{2}$, and the computation for the other two sides follows similarly.

Notice that, considering the plane containing $A_{1}, A_{2}, O_{1}, O_{2}$, draw the line perpendicular to $O_{2} A_{2}$ that goes through O_{1}. Say that this line intersects $O_{2} A_{2}$ at X_{1}. Then, $O_{1} X_{1}=A_{1} A_{2}$, and we know that $O_{2} X_{1}=O_{2} A_{2}-O_{1} A_{1}=1$. Therefore, it follows that, by the Pythagorean theorem, as $O_{1} O_{2}=14$, we have that the length of $A_{1} A_{2}$ is $\sqrt{14^{2}-2^{2}}$.
Similarly, we have that $A_{2} A_{3}=\sqrt{18^{2}-2^{2}}$ and $A_{3} A_{1}=\sqrt{16^{2}-4^{2}}$. Notice that the sum of these values is less than $14+18+16=48$. We argue that this sum is larger than 47 . To see this, observe that $(n-1 / 3)^{2}=n^{2}-2 n / 3+1 / 9<n^{2}-4$, for $n \geq 14$. Therefore, it follows that $\sqrt{14^{2}-2^{2}}>14-1 / 3$, and similarly for the other two sides. Summing up these inequalities yields that the perimeter is larger than 47 . This is our desired floor.
3. Circle Γ is centered at $(0,0)$ in the plane with radius $2022 \sqrt{3}$. Circle Ω is centered on the x-axis, passes through the point $A=(6066,0)$, and intersects Γ orthogonally at the point $P=(x, y)$ with $y>0$. If the length of the minor $\operatorname{arc} A P$ on Ω can be expressed as $\frac{m \pi}{n}$ for relatively prime positive integers m, n, find $m+n$.
(Two circles are said to intersect orthogonally at a point P if the tangent lines at P form a right angle.)
Proposed by Sunay Joshi
Answer: 1349
Let $O=(0,0)$. Let $R=2022 \sqrt{3}$ denote the radius of Γ, so that $O A=R \sqrt{3}$. Let r denote the radius of Ω. Let Q denote the center of Ω. Since $O P Q$ is a right triangle, $P Q=\sqrt{r^{2}+R^{2}}$.

P U M ㄷC

Since $O A=O Q+Q A$, we have

$$
\sqrt{R^{2}+r^{2}}+r=R \sqrt{3}
$$

Solving, we find that $r=R / \sqrt{3}=2022$. Therefore $\angle O Q P=60^{\circ}$ and the minor arc $A P$ corresponds to an interior angle of 120°. It follows that the desired arclength is given as $\frac{1}{3} \cdot 2 \pi r=\frac{4044 \pi}{3}=\frac{1348 \pi}{1}$, and our answer is $1348+1=1349$.
4. An ellipse has foci A and B and has the property that there is some point C on the ellipse such that the area of the circle passing through A, B, and, C is equal to the area of the ellipse. Let e be the largest possible eccentricity of the ellipse. One may write e^{2} as $\frac{a+\sqrt{b}}{c}$, where a, b, and c are integers such that a and c are relatively prime, and b is not divisible by the square of any prime. Find $a^{2}+b^{2}+c^{2}$.

Proposed by Daniel Carter

Answer: 30
Consider the ellipse with largest possible eccentricity that has this property. The smallest possible area of the circle is when the center of the circle is the center of the ellipse. Let O be the center of the ellipse. Then $\pi(O A)^{2}=\pi R r$, where R, r are the semi-major and semi-minor axes. We have $O A / R=e$, so then $(O A) e=r$. Noting that $r^{2}=R^{2}-(O A)^{2}$, this means $e^{2}=\left(1 / e^{2}-1\right)$, or $e^{2}=\frac{-1+\sqrt{5}}{2}$. So the answer is $(-1)^{2}+5^{2}+2^{2}=30$.
5. Daeun draws a unit circle centered at the origin and inscribes within it a regular hexagon $A B C D E F$. Then Dylan chooses a point P within the circle of radius 2 centered at the origin. Let M be the maximum possible value of $|P A| \cdot|P B| \cdot|P C| \cdot|P D| \cdot|P E| \cdot|P F|$, and let N be the number of possible points P for which this maximal value is obtained. Find $M+N^{2}$.

Proposed by Dylan Epstein-Gross

Answer: 101
Using roots of unity, the product of lengths is

$$
|z-1||z-a|\left|z-a^{2}\right| \cdots\left|z-a^{5}\right|=\left|z^{6}-1\right|
$$

This is maximized when $z^{6}=-64$, which has six solutions with $M=65$. Thus the answer is $65+6^{2}=101$.
6. Let $\triangle A B C$ be an equilateral triangle. Points D, E, F are drawn on sides $A B, B C$, and $C A$ respectively such that $[A D F]=[B E D]+[C E F]$ and $\triangle A D F \sim \triangle B E D \sim \triangle C E F$. The ratio $\frac{[A B C]}{[D E F]}$ can be expressed as $\frac{a+b \sqrt{c}}{d}$, where a, b, c, and d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find $a+b+c+d$.
(Here $[\mathcal{P}]$ denotes the area of polygon \mathcal{P}.)
Proposed by Adam Huang
Answer: 17
Assume WLOG that $\triangle A B C$ has sidelength 1 . The similarity condition implies $D E^{2}+E F^{2}=$ $D F^{2}$, hence $\angle D E F=90$. Angle chasing also yields $\angle B E D=45$, so that $\triangle B E D, \triangle C E F$ are 60-45-75 triangles and $\triangle D E F$ is a 30-60-90 right triangle. By the Law of Sines applied to $\triangle B E D$ and $\triangle C E F$, the lengths $z=D E$ and $x=B E$ satisfy $\frac{z}{\sin 60}=\frac{x}{\sin 75}$ and $\frac{z \sqrt{3}}{\sin 60}=$ $\frac{1-x}{\sin 75}$. Solving, we find $x=\frac{\sqrt{3}-1}{2}$ and $z=\frac{2 \sqrt{6}-3 \sqrt{2}}{2}$. Thus $[D E F]=\frac{z^{2} \sqrt{3}}{2}$ and the ratio is $[A B C] /[D E F]=\frac{\sqrt{3} / 4}{z^{2} \sqrt{3} / 2}$, which reduces to $\frac{7+4 \sqrt{3}}{3}$. Our answer is $7+4+3+3=17$.
7. Let $\triangle A B C$ be a triangle with $A B=5, B C=8$, and, $C A=7$. Let the center of the A-excircle be O, and let the A-excircle touch lines $B C, C A$, and, $A B$ at points X, Y, and, Z, respectively. Let h_{1}, h_{2}, and, h_{3} denote the distances from O to lines $X Y, Y Z$, and, $Z X$, respectively. If $h_{1}^{2}+h_{2}^{2}+h_{3}^{2}$ can be written as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m+n$.
Proposed by Sunay Joshi
Answer: 2189
Let a, b, c denote the lengths of sides $B C, C A, A B$, and let r_{A} denote the radius of the A excircle. We claim that $h_{1}=\frac{r_{A}^{2} \sin \frac{C}{2}}{s-b}, h_{2}=\frac{r_{A}^{2} \sin \frac{B}{2}}{s-c}$, and $h_{3}=\frac{r_{A}^{2} \cos \frac{A}{2}}{s}$. We begin with h_{1}. Computing the area of $\triangle O X Y$ in two ways, we find $\frac{1}{2} h_{1} \cdot X Y=\frac{1}{2} r_{A}^{2} \sin X O Y$. Since $X Y=2(s-b) \cos \frac{C}{2}$ and $\angle X O Y=C$, solving the equation for h_{1} yields the desired formula. By symmetry, this implies the expression for h_{3}. For h_{2}, we compute the area of $\triangle Y O Z$ in two ways to find $\frac{1}{2} h_{2} \cdot Y Z=\frac{1}{2} r_{A}^{2} \sin Y O Z$. Since $\angle Y O Z=\pi-A$ and $Y Z=2 s \sin \frac{A}{2}$, solving the equation for h_{2} yields the desired formula.
Having established the above, we now compute each of h_{1}, h_{2}, h_{3}. By the Law of Cosines, $\cos A=\frac{1}{7}, \cos B=\frac{1}{2}$, and $\cos C=\frac{11}{14}$. By the half-angle formulae, it follows that $\cos \frac{A}{2}=\frac{2}{\sqrt{7}}$, $\sin \frac{B}{2}=\frac{1}{2}$, and $\sin \frac{C}{2}=\frac{\sqrt{3}}{2 \sqrt{7}}$. Next, since $r_{A}(s-a)=K$, Heron's formula implies that $r_{A}^{2}=\frac{s(s-b)(s-c)}{s-a}=75$. Putting everything together, we find that

$$
h_{1}^{2}+h_{2}^{2}+h_{3}^{2}=75^{2} \cdot\left[\left(\frac{2 / \sqrt{7}}{10}\right)^{2}+\left(\frac{\sqrt{3} /(2 \sqrt{7})}{3}\right)^{2}+\left(\frac{1 / 2}{5}\right)^{2}\right]=\frac{2175}{14}
$$

This gives an answer of $m+n=2189$.
8. Triangle $\triangle A B C$ has sidelengths $A B=10, A C=14$, and, $B C=16$. Circle ω_{1} is tangent to rays $\overrightarrow{A B}, \overrightarrow{A C}$ and passes through B. Circle ω_{2} is tangent to rays $\overrightarrow{A B}, \overrightarrow{A C}$ and passes through C. Let ω_{1}, ω_{2} intersect at points X, Y. The square of the perimeter of triangle $\triangle A X Y$ is equal to $\frac{a+b \sqrt{c}}{d}$, where a, b, c, and, d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find $a+b+c+d$.
Proposed by Frank Lu
Answer: 6272
Draw the angle bisector of $B A C$, which we denote as ℓ. Notice that if O_{1} is the center of ω_{1} and O_{2} is the center of ω_{2}, then we have that O_{1}, O_{2} lie on this angle bisector. It follows that this angle bisector must be the perpendicular bisector of $X Y$, since $X Y$ is the radical axis of these two circles.

We first compute $A P$. To do this, consider the following operation: first, reflect the diagram about the angle bisector, then perform an inversion about A of radius $\sqrt{10 \cdot 14}$. (This latter inversion is referred to sometimes as a root bc inversion). Notice that this operation sends the circle ω_{1} to ω_{2}, and sends X to Y. Furthermore, since ℓ is the perpendicular bisector of $X Y$, we have that $A Y=A X=\frac{140}{A X}$, meaning that $A X=\sqrt{140}$. To find $X P$, we need to now find $A P$. But this can be done by considering the triangle $O_{1} X O_{2}$.
We compute the side lengths of this triangle. First, we know that $X O_{1}$ is the radius of ω_{1}. We can then compute $X O_{1}$ by considering the incircle: if the incircle has radius r, and l is the length of the tangent from A to the incircle, we know that $\frac{l}{r}=\frac{A B}{B O_{1}}=\frac{A B}{X O_{1}}$. But if s is the semiperimeter of $A B C$, we know that $l=s-B C=4$, and r is equal to $\sqrt{\frac{(s-A B)(s-B C)(s-A C)}{s}}=$ $\sqrt{\frac{10 \cdot 6 \cdot 4}{20}}=2 \sqrt{3}$. Therefore, we see that $X O_{1}=5 \sqrt{3}$. Similarly, $X O_{2}=7 \sqrt{3}$. Finally, we can
then compute that $O_{1} O_{2}=A O_{2}-A O_{1}$, which using the Pythagorean theorem is $7 \sqrt{7}-5 \sqrt{7}=$ $2 \sqrt{7}$.

Therefore, we compute that $P O_{2}^{2}-P O_{1}^{2}=72$. Since this is larger than $2 \sqrt{7}$, we see that our triangle is obtuse. Thus, we have that $O_{1} P+O_{2} P=\frac{36 \sqrt{7}}{7}$, and $O P_{2}-O P_{1}=2 \sqrt{7}$, which gives us that $O_{1} P=\frac{11 \sqrt{7}}{7}$, and so therefore $A P=A O_{1}+O_{1} P=\frac{24 \sqrt{7}}{7}$.
From here, we compute that $X P^{2}=140-\frac{576}{7}=\frac{404}{7}$, or that $X P=2 \sqrt{\frac{101}{7}}$. Therefore, the perimeter of our triangle is equal to $4 \sqrt{\frac{101}{7}}+4 \sqrt{35}=\frac{\sqrt{1616}+\sqrt{3920}}{\sqrt{7}}$. Therefore the square of the perimeter is $\frac{5536+224 \sqrt{505}}{7}$, so our answer is $a+b+c+d=5536+224+505+7=6272$.

