PUM.C

Geometry B Solutions

1. Rectangle ABCD has AB = 24 and BC = 7. Let d be the distance between the centers of the incircles of $\triangle ABC$ and $\triangle CDA$. Find d^2 .

Proposed by Atharva Pathak

Answer: 325

Since $\triangle ABC$ has sidelengths 7, 24, 25, the identity K = rs implies $r = \frac{\frac{1}{2} \cdot 7 \cdot 24}{\frac{7+24+25}{2}} = 3$. Since $\triangle ABC$ and $\triangle CDA$ are congruent, the inradius of $\triangle CDA$ is also 3. Thus the horizontal distance between the incenters is 24 - 3 - 3 = 18, and the vertical distance between the incenters is 7 - 3 - 3 = 1. By Pythagoras, our answer is $d^2 = 18^2 + 1^2 = 325$.

2. The area of the largest square that can be inscribed in a regular hexagon with sidelength 1 can be expressed as $a - b\sqrt{c}$ where c is not divisible by the square of any prime. Find a + b + c.

Proposed by Adam Huang

Answer: 21

Let our regular hexagon be ABCDEF with center O. It is easy to see that the largest square must be congruent to a square WXYZ centered at O, where W, X, Y, Z lie on sides AB, CD, DE, FA such that $WX \parallel FB$ and $XY \parallel BC$. Let c = AW, b = WB, and d = WX. Clearly b + c = 1. By drawing an altitude from A in $\triangle ZAW$, we find $d = c\sqrt{3}$. By drawing altitudes from B, C in trapezoid BCXW, we find $d = \frac{b}{2} + 1 + \frac{b}{2} = b + 1$. Therefore $c\sqrt{3} = b + 1$, so that $c(\sqrt{3} + 1) = 2$, and so $c = \sqrt{3} - 1$. Hence $d = 3 - \sqrt{3}$, which yields an area of $(3 - \sqrt{3})^2 = 12 - 6\sqrt{3}$ and an answer of 12 + 6 + 3 = 21.

3. Define a common chord between two intersecting circles to be the line segment connecting their two intersection points. Let $\omega_1, \omega_2, \omega_3$ be three circles of radii 3, 5, and 7, respectively. Suppose they are arranged in such a way that the common chord of ω_1 and ω_2 is a diameter of ω_1 , the common chord of ω_1 and ω_3 is a diameter of ω_1 , and the common chord of ω_2 and ω_3 is a diameter of ω_2 . Compute the square of the area of the triangle formed by the centers of the three circles.

Proposed by Eric Shen

Answer: 96

By Pythagoras, the distance between the centers of circles ω_i and ω_j with j > i is $\sqrt{r_j^2 - r_i^2}$. We seek the area of a triangle with sidelengths $\sqrt{16}$, $\sqrt{24}$, and $\sqrt{40}$. But this is a right triangle whose area is $\frac{1}{2} \cdot \sqrt{16} \cdot \sqrt{24} = 4\sqrt{6}$, and our answer is $(4\sqrt{6})^2 = 96$.

4. Let $\triangle ABC$ be an isosceles triangle with $AB = AC = \sqrt{7}$ and BC = 1. Let G be the centroid of $\triangle ABC$. Given $j \in \{0, 1, 2\}$, let T_j denote the triangle obtained by rotating $\triangle ABC$ about G by $2\pi j/3$ radians. Let \mathcal{P} denote the intersection of the interiors of triangles T_0, T_1, T_2 . If K denotes the area of \mathcal{P} , then $K^2 = \frac{a}{b}$ for relatively prime positive integers a, b. Find a + b.

Proposed by Sunay Joshi

Answer: 1843

Construct the equilateral triangle $\triangle AXY$ with sidelength 3 such that BC is the middle third of the side XY (with B closer to X, WLOG). Note that T_0, T_1, T_2 lie within $\triangle AXY$; they are simply $\triangle ABC$ rotated. Let M, N lie on AY, AX such that AM/MY = 1/2 and AN/NX =1/2. Let $P = AB \cap MX$, $Q = NY \cap MX$, and $R = AC \cap NY$. Then it is easy to see by symmetry that we see $K = 3 \cdot [PQRG]$. Since PQRG has perpendicular diagonals, its area is

PUM.C

given by $\frac{1}{2} \cdot QG \cdot PR$. To compute PR, note by mass points that AP/PB = 3/2, hence by similar triangles $PR = 3/5 \cdot BC = 3/5$. By mass points, we also have hat AQ is half the height of $\triangle AXY$, hence $QG = AG - AQ = \sqrt{3}/4$. Solving for K, we find $K = 3/2 \cdot \sqrt{3}/4 \cdot 3/5 = 9\sqrt{3}/40$. Squaring yields $K^2 = 243/1600$ and our answer is 243 + 1600 = 1843.

5. Let $\triangle ABC$ be a triangle with AB = 13, BC = 14, and CA = 15. Let D, E, and F be the midpoints of AB, BC, and CA respectively. Imagine cutting $\triangle ABC$ out of paper and then folding $\triangle AFD$ up along FD, folding $\triangle BED$ up along DE, and folding $\triangle CEF$ up along EF until A, B, and C coincide at a point G. The volume of the tetrahedron formed by vertices D, E, F, and G can be expressed as $\frac{p\sqrt{q}}{r}$, where p, q, and r are positive integers, p and r are relatively prime, and q is square-free. Find p + q + r.

Proposed by Atharva Pathak

Answer: 80

Let H_1 be the foot of the perpendicular from A to DF and let H_2 be the foot of the perpendicular from E to DF. Note that a 13-14-15 triangle is a 5-12-13 triangle glued to a 9-12-15 triangle along the side of length 12. Because $\triangle ADF$ and $\triangle EFD$ are similar to $\triangle ABC$ scaled by a factor of 1/2, we get that $AH_1 = EH_2 = 6$, $DH_1 = FH_2 = \frac{5}{2}$, and $H_1H_2 = 2$. Let θ be the dihedral angle between $\triangle GDF$ and $\triangle EDF$ in the tetrahedron. Because GE came from BE and CE in the original triangle, we have GE = 7. Now imagine projecting points G, H_1 , H_2 , and E onto a plane perpendicular to FD, such that G maps to G', H_1 and H_2 map to H', and E maps to E'. Since GE has a component of length $H_1H_2 = 2$ perpendicular to the plane, we get $G'E' = \sqrt{7^2 - 2^2} = \sqrt{45}$. Applying the law of cosines to $\triangle G'H'E'$ with the angle θ at H' gives $\cos \theta = \frac{3}{8}$. So the height of the tetrahedron, which is the distance from G' to H'E', is $6\sin \theta = \frac{3\sqrt{55}}{4}$. Finally, the area of the base of the tetrahedron, i.e. $\triangle DEF$, is $\frac{1}{2}(7)(6) = 21$, so the volume is $\frac{1}{3}(21)\left(\frac{3\sqrt{55}}{4}\right) = \frac{21\sqrt{55}}{4}$, which gives a final answer of 80.

6. Let $\triangle ABC$ be a triangle with AB = 4, BC = 6, and CA = 5. Let the angle bisector of $\angle BAC$ intersect BC at the point D and the circumcircle of $\triangle ABC$ again at the point $M \neq A$. The perpendicular bisector of segment DM intersects the circle centered at M passing through B at two points, X and Y. Compute $AX \cdot AY$.

Proposed by Eric Shen

Answer: 36

Note that AX = AY by symmetry and that AX = AM by inversion about M. In a 4-5-6 triangle we have the following relation between the angles: A = 2C. Since AM subtends an angle of $\frac{A}{2} + C$ and since $\frac{A}{2} + C = A$, it follows that AM = BC = 6. Our answer is $6^2 = 36$.

7. Let $\triangle ABC$ have AB = 15, AC = 20, and BC = 21. Suppose ω is a circle passing through A that is tangent to segment BC. Let point $D \neq A$ be the second intersection of AB with ω , and let point $E \neq A$ be the second intersection of AC with ω . Suppose DE is parallel to BC. If $DE = \frac{a}{b}$, where a, b are relatively prime positive integers, find a + b.

Proposed by Frank Lu

Answer: 361

First, since DE is parallel to BC, we have that triangles ADE, ABC are similar. Furthermore, we have a homothety that sends triangle ADE to ABC. Notice that the image of this homothety also sends ω to the circumcircle of ABC. We thus need to determine the ratio of this homothety.

To do this, let X be the tangency point of ω to BC. Draw line AX, and let M be the second intersection of line AX with the circumcircle. Then, we know from homothety that $\frac{AX}{AM} = \frac{DE}{BC}$;

PUM.C

we just need to compute AX, AM. We furthermore note that ω is tangent to the circumcircle by homothety. From this configuration, we thus find that M is the midpoint of the minor arc BC, meaning that AX is the angle bisector of angle $\angle BAC$. First, to compute AX, we can employ Stewart's theorem. We know from the angle bisector theorem that $\frac{BX}{CX} = \frac{3}{4}$, meaning that BX = 9 and CX = 12. Therefore, we have by Stewart's theorem that $AX^2 \cdot 21 + 9 \cdot 12 \cdot 21 =$ $15^2 \cdot 12 + 20^2 \cdot 9$, or that $21AX^2 = 5^2 \cdot 3 \cdot (3^2 \cdot 4 + 4^2 \cdot 3) - 9 \cdot 12 \cdot 21 = 5^2 \cdot 3 \cdot 4 \cdot 21 - 9 \cdot 12 \cdot 21$, or that $AX^2 = 300 - 108 = 192$, so $AX = 8\sqrt{3}$.

From here, we compute AM. The method that we use to compute this is Ptolemy's theorem and Law of Cosines chasing. First, consider BM, CM. Note that $\angle BMC = 180 - \angle BAC$, and so $\cos \angle BAC = -\cos \angle BMC$. But now by Law of Cosines, we know that $\cos \angle BAC = \frac{15^2 + 20^2 - 21^2}{2 \cdot 15 \cdot 20} = \frac{23}{75}$. Therefore, we have that $BC^2 = BM^2(2-2\cos \angle BMC) = BM^2\frac{196}{75}$, meaning that $BM = CM = \frac{15\sqrt{3}}{2}$. Finally, by Ptolemy's Theorem, we have that $AM \cdot BC = BM(AB + AC)$, or that $AM = \frac{35}{21}\frac{15\sqrt{3}}{2} = \frac{25\sqrt{3}}{2}$.

It follows that $DE = \frac{AX}{AM}BC = \frac{336}{25}$, so our answer is 361.

8. Let $\triangle ABC$ have AB = 14, BC = 30, AC = 40 and $\triangle AB'C'$ with $AB' = 7\sqrt{6}$, $B'C' = 15\sqrt{6}$, $AC' = 20\sqrt{6}$ such that $\angle BAB' = \frac{5\pi}{12}$. The lines BB' and CC' intersect at point D. Let O be the circumcenter of $\triangle BCD$, and let O' be the circumcenter of $\triangle B'C'D$. Then the length of segment OO' can be expressed as $\frac{a+b\sqrt{c}}{d}$, where a, b, c, and d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find a+b+c+d.

Proposed by Adam Huang

Answer: 55

Note that $\triangle ABC$ and $\triangle AB'C'$ are spirally similar with center of spiral similarity given by A and angle $\frac{5\pi}{12}$ and dilation factor $\frac{\sqrt{6}}{2}$. By properties of spiral similarity, we have that $D := BB' \cap CC'$ lies on circumcircles (ABC) and (AB'C'). Therefore AO is the circumradius of $\triangle ABC$, and $AO' = \frac{\sqrt{6}}{2}AO$ by similarity, with $\angle OAO' = \frac{5\pi}{12}$. To compute R := AO, note by Heron that the area of $\triangle ABC$ is K = 168, so that $\frac{abc}{4R} = K \implies R = \frac{abc}{4K} = \frac{14\cdot30\cdot40}{4\cdot168} = 25$. By Law of Cosines, we have $(OO')^2 = 25^2 \cdot (1^2 + (\frac{\sqrt{6}}{2})^2 - 2 \cdot 1 \cdot \frac{\sqrt{6}}{2} \cdot \cos \frac{5\pi}{12})$, so that $OO' = \frac{25+25\sqrt{3}}{2}$, which yields an answer of a + b + c + d = 25 + 25 + 3 + 2 = 55.