Geometry B Solutions

1. Rectangle $A B C D$ has $A B=24$ and $B C=7$. Let d be the distance between the centers of the incircles of $\triangle A B C$ and $\triangle C D A$. Find d^{2}.

Proposed by Atharva Pathak
Answer: 325
Since $\triangle A B C$ has sidelengths $7,24,25$, the identity $K=r s$ implies $r=\frac{\frac{1}{2} \cdot 7 \cdot 24}{\frac{7+24+25}{2}}=3$. Since $\triangle A B C$ and $\triangle C D A$ are congruent, the inradius of $\triangle C D A$ is also 3 . Thus the horizontal distance between the incenters is $24-3-3=18$, and the vertical distance between the incenters is $7-3-3=1$. By Pythagoras, our answer is $d^{2}=18^{2}+1^{2}=325$.
2. The area of the largest square that can be inscribed in a regular hexagon with sidelength 1 can be expressed as $a-b \sqrt{c}$ where c is not divisible by the square of any prime. Find $a+b+c$.
Proposed by Adam Huang
Answer: 21
Let our regular hexagon be $A B C D E F$ with center O. It is easy to see that the largest square must be congruent to a square $W X Y Z$ centered at O, where W, X, Y, Z lie on sides $A B, C D, D E, F A$ such that $W X \| F B$ and $X Y \| B C$. Let $c=A W, b=W B$, and $d=W X$. Clearly $b+c=1$. By drawing an altitude from A in $\triangle Z A W$, we find $d=c \sqrt{3}$. By drawing altitudes from B, C in trapezoid $B C X W$, we find $d=\frac{b}{2}+1+\frac{b}{2}=b+1$. Therefore $c \sqrt{3}=b+1$, so that $c(\sqrt{3}+1)=2$, and so $c=\sqrt{3}-1$. Hence $d=3-\sqrt{3}$, which yields an area of $(3-\sqrt{3})^{2}=12-6 \sqrt{3}$ and an answer of $12+6+3=21$.
3. Define a common chord between two intersecting circles to be the line segment connecting their two intersection points. Let $\omega_{1}, \omega_{2}, \omega_{3}$ be three circles of radii 3,5 , and 7 , respectively. Suppose they are arranged in such a way that the common chord of ω_{1} and ω_{2} is a diameter of ω_{1}, the common chord of ω_{1} and ω_{3} is a diameter of ω_{1}, and the common chord of ω_{2} and ω_{3} is a diameter of ω_{2}. Compute the square of the area of the triangle formed by the centers of the three circles.
Proposed by Eric Shen
Answer: 96
By Pythagoras, the distance between the centers of circles ω_{i} and ω_{j} with $j>i$ is $\sqrt{r_{j}^{2}-r_{i}^{2}}$.
We seek the area of a triangle with sidelengths $\sqrt{16}, \sqrt{24}$, and $\sqrt{40}$. But this is a right triangle whose area is $\frac{1}{2} \cdot \sqrt{16} \cdot \sqrt{24}=4 \sqrt{6}$, and our answer is $(4 \sqrt{6})^{2}=96$.
4. Let $\triangle A B C$ be an isosceles triangle with $A B=A C=\sqrt{7}$ and $B C=1$. Let G be the centroid of $\triangle A B C$. Given $j \in\{0,1,2\}$, let T_{j} denote the triangle obtained by rotating $\triangle A B C$ about G by $2 \pi j / 3$ radians. Let \mathcal{P} denote the intersection of the interiors of triangles T_{0}, T_{1}, T_{2}. If K denotes the area of \mathcal{P}, then $K^{2}=\frac{a}{b}$ for relatively prime positive integers a, b. Find $a+b$.
Proposed by Sunay Joshi
Answer: 1843
Construct the equilateral triangle $\triangle A X Y$ with sidelength 3 such that $B C$ is the middle third of the side $X Y$ (with B closer to X, WLOG). Note that T_{0}, T_{1}, T_{2} lie within $\triangle A X Y$; they are simply $\triangle A B C$ rotated. Let M, N lie on $A Y, A X$ such that $A M / M Y=1 / 2$ and $A N / N X=$ $1 / 2$. Let $P=A B \cap M X, Q=N Y \cap M X$, and $R=A C \cap N Y$. Then it is easy to see by symmetry that we see $K=3 \cdot[P Q R G]$. Since $P Q R G$ has perpendicular diagonals, its area is
given by $\frac{1}{2} \cdot Q G \cdot P R$. To compute $P R$, note by mass points that $A P / P B=3 / 2$, hence by similar triangles $P R=3 / 5 \cdot B C=3 / 5$. By mass points, we also have hat $A Q$ is half the height of $\triangle A X Y$, hence $Q G=A G-A Q=\sqrt{3} / 4$. Solving for K, we find $K=3 / 2 \cdot \sqrt{3} / 4 \cdot 3 / 5=9 \sqrt{3} / 40$. Squaring yields $K^{2}=243 / 1600$ and our answer is $243+1600=1843$.
5. Let $\triangle A B C$ be a triangle with $A B=13, B C=14$, and $C A=15$. Let D, E, and F be the midpoints of $A B, B C$, and $C A$ respectively. Imagine cutting $\triangle A B C$ out of paper and then folding $\triangle A F D$ up along $F D$, folding $\triangle B E D$ up along $D E$, and folding $\triangle C E F$ up along $E F$ until A, B, and C coincide at a point G. The volume of the tetrahedron formed by vertices D, E, F, and G can be expressed as $\frac{p \sqrt{q}}{r}$, where p, q, and r are positive integers, p and r are relatively prime, and q is square-free. Find $p+q+r$.
Proposed by Atharva Pathak
Answer: 80
Let H_{1} be the foot of the perpendicular from A to $D F$ and let H_{2} be the foot of the perpendicular from E to $D F$. Note that a 13-14-15 triangle is a $5-12-13$ triangle glued to a $9-12-15$ triangle along the side of length 12 . Because $\triangle A D F$ and $\triangle E F D$ are similar to $\triangle A B C$ scaled by a factor of $1 / 2$, we get that $A H_{1}=E H_{2}=6, D H_{1}=F H_{2}=\frac{5}{2}$, and $H_{1} H_{2}=2$. Let θ be the dihedral angle between $\triangle G D F$ and $\triangle E D F$ in the tetrahedron. Because $G E$ came from $B E$ and $C E$ in the original triangle, we have $G E=7$. Now imagine projecting points G, H_{1}, H_{2}, and E onto a plane perpendicular to $F D$, such that G maps to G^{\prime}, H_{1} and H_{2} map to H^{\prime}, and E maps to E^{\prime}. Since $G E$ has a component of length $H_{1} H_{2}=2$ perpendicular to the plane, we get $G^{\prime} E^{\prime}=\sqrt{7^{2}-2^{2}}=\sqrt{45}$. Applying the law of cosines to $\triangle G^{\prime} H^{\prime} E^{\prime}$ with the angle θ at H^{\prime} gives $\cos \theta=\frac{3}{8}$. So the height of the tetrahedron, which is the distance from G^{\prime} to $H^{\prime} E^{\prime}$, is $6 \sin \theta=\frac{3 \sqrt{55}}{4}$. Finally, the area of the base of the tetrahedron, i.e. $\triangle D E F$, is $\frac{1}{2}(7)(6)=21$, so the volume is $\frac{1}{3}(21)\left(\frac{3 \sqrt{55}}{4}\right)=\frac{21 \sqrt{55}}{4}$, which gives a final answer of 80 .
6. Let $\triangle A B C$ be a triangle with $A B=4, B C=6$, and $C A=5$. Let the angle bisector of $\angle B A C$ intersect $B C$ at the point D and the circumcircle of $\triangle A B C$ again at the point $M \neq A$. The perpendicular bisector of segment $D M$ intersects the circle centered at M passing through B at two points, X and Y. Compute $A X \cdot A Y$.

Proposed by Eric Shen

Answer: 36
Note that $A X=A Y$ by symmetry and that $A X=A M$ by inversion about M. In a 4-5-6 triangle we have the following relation between the angles: $A=2 C$. Since $A M$ subtends an angle of $\frac{A}{2}+C$ and since $\frac{A}{2}+C=A$, it follows that $A M=B C=6$. Our answer is $6^{2}=36$.
7. Let $\triangle A B C$ have $A B=15, A C=20$, and $B C=21$. Suppose ω is a circle passing through A that is tangent to segment $B C$. Let point $D \neq A$ be the second intersection of $A B$ with ω, and let point $E \neq A$ be the second intersection of $A C$ with ω. Suppose $D E$ is parallel to $B C$. If $D E=\frac{a}{b}$, where a, b are relatively prime positive integers, find $a+b$.
Proposed by Frank Lu
Answer: 361
First, since $D E$ is parallel to $B C$, we have that triangles $A D E, A B C$ are similar. Furthermore, we have a homothety that sends triangle $A D E$ to $A B C$. Notice that the image of this homothety also sends ω to the circumcircle of $A B C$. We thus need to determine the ratio of this homothety.
To do this, let X be the tangency point of ω to $B C$. Draw line $A X$, and let M be the second intersection of line $A X$ with the circumcircle. Then, we know from homothety that $\frac{A X}{A M}=\frac{D E}{B C}$;

P U M ㄷC

we just need to compute $A X, A M$. We furthermore note that ω is tangent to the circumcircle by homothety. From this configuration, we thus find that M is the midpoint of the minor arc $B C$, meaning that $A X$ is the angle bisector of angle $\angle B A C$. First, to compute $A X$, we can employ Stewart's theorem. We know from the angle bisector theorem that $\frac{B X}{C X}=\frac{3}{4}$, meaning that $B X=9$ and $C X=12$. Therefore, we have by Stewart's theorem that $A X^{2} \cdot 21+9 \cdot 12 \cdot 21=$ $15^{2} \cdot 12+20^{2} \cdot 9$, or that $21 A X^{2}=5^{2} \cdot 3 \cdot\left(3^{2} \cdot 4+4^{2} \cdot 3\right)-9 \cdot 12 \cdot 21=5^{2} \cdot 3 \cdot 4 \cdot 21-9 \cdot 12 \cdot 21$, or that $A X^{2}=300-108=192$, so $A X=8 \sqrt{3}$.

From here, we compute $A M$. The method that we use to compute this is Ptolemy's theorem and Law of Cosines chasing. First, consider $B M, C M$. Note that $\angle B M C=180-\angle B A C$, and so $\cos \angle B A C=-\cos \angle B M C$. But now by Law of Cosines, we know that $\cos \angle B A C=$ $\frac{15^{2}+20^{2}-21^{2}}{2 \cdot 15 \cdot 20}=\frac{23}{75}$. Therefore, we have that $B C^{2}=B M^{2}(2-2 \cos \angle B M C)=B M^{2} \frac{196}{75}$, meaning that $B M=C M=\frac{15 \sqrt{3}}{2}$. Finally, by Ptolemy's Theorem, we have that $A M \cdot B C=B M(A B+$ $A C)$, or that $A M=\frac{35}{21} \frac{15 \sqrt{3}}{2}=\frac{25 \sqrt{3}}{2}$.
It follows that $D E=\frac{A X}{A M} B C=\frac{336}{25}$, so our answer is 361 .
8. Let $\triangle A B C$ have $A B=14, B C=30, A C=40$ and $\triangle A B^{\prime} C^{\prime}$ with $A B^{\prime}=7 \sqrt{6}, B^{\prime} C^{\prime}=15 \sqrt{6}$, $A C^{\prime}=20 \sqrt{6}$ such that $\angle B A B^{\prime}=\frac{5 \pi}{12}$. The lines $B B^{\prime}$ and $C C^{\prime}$ intersect at point D. Let O be the circumcenter of $\triangle B C D$, and let O^{\prime} be the circumcenter of $\triangle B^{\prime} C^{\prime} D$. Then the length of segment $O O^{\prime}$ can be expressed as $\frac{a+b \sqrt{c}}{d}$, where a, b, c, and d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find $a+b+c+d$.

Proposed by Adam Huang

Answer: 55
Note that $\triangle A B C$ and $\triangle A B^{\prime} C^{\prime}$ are spirally similar with center of spiral similarity given by A and angle $\frac{5 \pi}{12}$ and dilation factor $\frac{\sqrt{6}}{2}$. By properties of spiral similarity, we have that $D:=B B^{\prime} \cap C C^{\prime}$ lies on circumcircles $(A B C)$ and $\left(A B^{\prime} C^{\prime}\right)$. Therefore $A O$ is the circumradius of $\triangle A B C$, and $A O^{\prime}=\frac{\sqrt{6}}{2} A O$ by similarity, with $\angle O A O^{\prime}=\frac{5 \pi}{12}$. To compute $R:=A O$, note by Heron that the area of $\triangle A B C$ is $K=168$, so that $\frac{a b c}{4 R}=K \Longrightarrow R=\frac{a b c}{4 K}=\frac{14 \cdot 30 \cdot 40}{4 \cdot 168}=25$. By Law of Cosines, we have $\left(O O^{\prime}\right)^{2}=25^{2} \cdot\left(1^{2}+\left(\frac{\sqrt{6}}{2}\right)^{2}-2 \cdot 1 \cdot \frac{\sqrt{6}}{2} \cdot \cos \frac{5 \pi}{12}\right)$, so that $O O^{\prime}=\frac{25+25 \sqrt{3}}{2}$, which yields an answer of $a+b+c+d=25+25+3+2=55$.

