Geometry B

1. Rectangle $A B C D$ has $A B=24$ and $B C=7$. Let d be the distance between the centers of the incircles of $\triangle A B C$ and $\triangle C D A$. Find d^{2}.
2. The area of the largest square that can be inscribed in a regular hexagon with sidelength 1 can be expressed as $a-b \sqrt{c}$ where c is not divisible by the square of any prime. Find $a+b+c$.
3. Define a common chord between two intersecting circles to be the line segment connecting their two intersection points. Let $\omega_{1}, \omega_{2}, \omega_{3}$ be three circles of radii 3,5 , and 7 , respectively. Suppose they are arranged in such a way that the common chord of ω_{1} and ω_{2} is a diameter of ω_{1}, the common chord of ω_{1} and ω_{3} is a diameter of ω_{1}, and the common chord of ω_{2} and ω_{3} is a diameter of ω_{2}. Compute the square of the area of the triangle formed by the centers of the three circles.
4. Let $\triangle A B C$ be an isosceles triangle with $A B=A C=\sqrt{7}$ and $B C=1$. Let G be the centroid of $\triangle A B C$. Given $j \in\{0,1,2\}$, let T_{j} denote the triangle obtained by rotating $\triangle A B C$ about G by $2 \pi j / 3$ radians. Let \mathcal{P} denote the intersection of the interiors of triangles T_{0}, T_{1}, T_{2}. If K denotes the area of \mathcal{P}, then $K^{2}=\frac{a}{b}$ for relatively prime positive integers a, b. Find $a+b$.
5. Let $\triangle A B C$ be a triangle with $A B=13, B C=14$, and $C A=15$. Let D, E, and F be the midpoints of $A B, B C$, and $C A$ respectively. Imagine cutting $\triangle A B C$ out of paper and then folding $\triangle A F D$ up along $F D$, folding $\triangle B E D$ up along $D E$, and folding $\triangle C E F$ up along $E F$ until A, B, and C coincide at a point G. The volume of the tetrahedron formed by vertices D, E, F, and G can be expressed as $\frac{p \sqrt{q}}{r}$, where p, q, and r are positive integers, p and r are relatively prime, and q is square-free. Find $p+q+r$.
6. Let $\triangle A B C$ be a triangle with $A B=4, B C=6$, and $C A=5$. Let the angle bisector of $\angle B A C$ intersect $B C$ at the point D and the circumcircle of $\triangle A B C$ again at the point $M \neq A$. The perpendicular bisector of segment $D M$ intersects the circle centered at M passing through B at two points, X and Y. Compute $A X \cdot A Y$.
7. Let $\triangle A B C$ have $A B=15, A C=20$, and $B C=21$. Suppose ω is a circle passing through A that is tangent to segment $B C$. Let point $D \neq A$ be the second intersection of $A B$ with ω, and let point $E \neq A$ be the second intersection of $A C$ with ω. Suppose $D E$ is parallel to $B C$. If $D E=\frac{a}{b}$, where a, b are relatively prime positive integers, find $a+b$.
8. Let $\triangle A B C$ have $A B=14, B C=30, A C=40$ and $\triangle A B^{\prime} C^{\prime}$ with $A B^{\prime}=7 \sqrt{6}, B^{\prime} C^{\prime}=15 \sqrt{6}$, $A C^{\prime}=20 \sqrt{6}$ such that $\angle B A B^{\prime}=\frac{5 \pi}{12}$. The lines $B B^{\prime}$ and $C C^{\prime}$ intersect at point D. Let O be the circumcenter of $\triangle B C D$, and let O^{\prime} be the circumcenter of $\triangle B^{\prime} C^{\prime} D$. Then the length of segment $O O^{\prime}$ can be expressed as $\frac{a+b \sqrt{c}}{d}$, where a, b, c, and d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find $a+b+c+d$.
(Write answers on next page.)

P U M \therefore C

Name:

Team:

Write answers in table below:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

