
Individual Finals A Solutions

1. Let p > 3 be a prime and k ≥ 0 an integer. Find the multiplicity of X − 1 in the factorization
of

f(X) = X3pk−1 +X3pk−2 + · · ·+X + 1

modulo p; in other words, find the unique non-negative integer r such that (X − 1)r divides
f(X) modulo p, but (X − 1)r+1 does not divide f(X) modulo p.

Proposed by Michael Cheng and Steven Wang

Solution: First note

f(X) =
X3pk − 1

X − 1
.

The key trick is to make the substitution X = Y + 1, so we are instead looking for the
multiplicity of Y in

f(Y ) =
(Y + 1)3p

k − 1

Y
.

Now

(Y + 1)3p
k

=

3pk∑
ℓ=0

(
3pk

ℓ

)
Y ℓ,

and we claim the coefficient
(
3pk

ℓ

)
is divisible by p unless pk | ℓ.

We use the notation
vp(n) = {k ∈ Z≥0 : pk | n and pk+1 ∤ n}.

It is well-known that

vp(n!) =

∞∑
r=0

⌊
n

pr

⌋
.

Therefore

vp

((
3pk

ℓ

))
= vp

(
(3pk)!

ℓ!(3pk − ℓ)!

)
=

∞∑
r=0

(⌊
3pk

pr

⌋
−

⌊
ℓ

pr

⌋
−

⌊
3pk − ℓ

pr

⌋)
︸ ︷︷ ︸

Sr

.

We have three cases depending on r:

• r > k: then all three floor functions are 0 (here we used the assumption that p > 3), so
Sr = 0.

• r ≤ k: then pr | 3pk, so Sr ≥ 0. More careful analysis shows that Sr = 0 iff pr | ℓ.

Therefore, vp

((
3pk

ℓ

))
= 0 iff pk | ℓ. Thus, modulo p, we have

f(Y ) =
(Y + 1)3p

k − 1

Y

=
1

Y

3pk∑
ℓ=0

(
3pk

ℓ

)
Y ℓ − 1


≡ 1

Y

(
Y 3pk

+AY 2pk

+AY pk
)

A =

(
3pk

2pk

)
=

(
3pk

pk

)
= Y 3pk−1 +AY 2pk−1 +AY pk−1,
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and p ∤ A, so the answer is pk − 1 .

Remark. The X = Y +1 trick can be used to prove the cyclotomic polynomial Φpk(X) =
Xp−1 + · · ·+X + 1 is irreducible over Z. In fact, one can check that Φpk(Y + 1) satisfies
the Eisenstein criterion.
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2. On an infinite triangular lattice, there is a single atom at a lattice point. We allow for four
operations as illustrated in Figure 1. In words, one could take an existing atom, split it into
three atoms, and place them at adjacent lattice points in one of the two displayed fashions (a
“split”). One could also reverse the process, i.e. taking three existing atoms in the displayed
configurations, and merge them into a single atom at the center (a “merge”).

Figure 1: See Individual Finals Problems document for diagram.

Assume that, after finitely many operations, there is again only a single atom remaining on
the lattice. Show that this is possible if and only if the final atom is contained in the sublattice
implied by Figure 2.

Figure 2: See Individual Finals Problems document for diagram.

Proposed by Michael Cheng and Steven Wang

Solution: First we show that the sublattice is the only possible loci for the final atom.
Consider the following numbering/weighting of the lattice:

Figure 3: Weighting of lattice

It is easy to check that any of the operations does not change the total weight of the atoms.
Therefore the final atom must appear on a lattice point with weight 1. Similarly one can rotate
this picture by 60◦ or 120◦, and one can conclude that only points of the given sublattice are
possible final positions of the atom.
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Remark. It might be of interest how one can come up with the weighting above. In
fact, to obtain an invariant one needs the “local ratios” of the weights to be translational
invariant (i.e. at each lattice point, the ratio of its weight to the six nearby ones is the
same everywhere). Thus the entire weighting is defined by two numbers as exampled
below:

Figure 4: Labelling with indeterminants

We then want
α+ βα−1 + β−1 = β + α−1 + β−1α = 1.

There are six pairs of solutions, but they all give Figure 3 under rotational and reflectional
symmetry.

Now we return to the other direction of the proof. By rotational symmetry, it suffices to con-
struct a sequence of moves that move the original atom 4 units to the right. The construction
can be fun whilst mildly infuriating. One possible sequence is as follows (the original at purple,
and the target at green):
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Figure 5: Step 1: apply the blue split.

Figure 6: Step 2: apply the orange split.

At this stage, we observe a maneuver that we call the “propagation lemma:”

5



Figure 7: The “propagation lemma”. Apply the blue split and
then the orange merge to move the purple pair to the right by
one unit.

This allows us to simultaneously move a pair of atoms spaced 2 units apart along the line they
are on. Using this 4 times on the result of Figure 6 we can obtain the following:

Figure 8: Step 3: apply the “propagation lemma” twice on the top row,
and twice on the bottom row.
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Figure 9: Step 4: apply the orange merge to get the purple atom.

Now we apply Steps 1-4 to the left-most atom (purple in Figure 9), treating it as the starting
point:

Figure 10: Step 5: repeat step 1-4 on the left-most atom, which replaces it
with three new atoms on the right, indicated by the purple arrows.

Finally, we use two merges to achieve our goal!
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Figure 11: Step 6: apply the blue merge and then the green merge to get
the desired green atom. No other atom is left on the lattice and we are
done.
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3. Let f(X) be a monic irreducible polynomial over Z; therefore, by Gauss’s Lemma, f is also
irreducible over Q (you may assume this). Moreover, assume f(X) | f(X2 + n) where n is an
integer such that n ̸∈ {−1, 0, 1}. Show that n2 ∤ f(0).
Proposed by Michael Cheng and Steven Wang

Solution: Let g(X) = X2 + p, so f(X) | f(g(X)). Note that if x is a (complex) root of f(X),
then so is g(x). Therefore g2(x), g3(x), · · · are all roots of f , where gk(x) = g(· · · g(x)) with
g is applied k times. However, f has finitely many roots, so there must be some root x0 of f
and some k ≥ 1 such that gk(x0) = x0. This means that x0 is a root of the polynomial

h(X) = gk(X)−X.

Irreducibility of f implies that f | h (this is a standard fact; we assume this for now and supply
an elementary proof later), and thus f(0) | h(0). However, it is easy to see that

h(0) = n+ (n+ · · · )2,

so n2 ∤ h(0) and n2 ∤ f(0).
Now we prove the claim that we assumed in the proof above:

Claim. Let α ∈ C be an algebraic number (i.e. α is the root of some rational polynomial).
Then there is some unique irreducible monic polynomial f(X) ∈ Q[X] with f(α) = 0;
moreover, for any polynomial h(X) ∈ Q[X] with h(α) = 0, we have f(X) | h(X) in Q[X].

Proof. Let f(X) be a monic polynomial having α as a root with minimal degree. We
claim that f satisfies the desired properties.

Assume for contradiction that f is not irreducible, so f(X) = g(X)h(X) with g, h ∈ Q[X]
and non-constant; moreover we may assume that g and h are both monic. Then α is a
root of one of them, which contradicts the minimality of f .

Now assume that h ∈ Q[X] with h(α) = 0. By the Euclidean algorithm (a.k.a. long
division of polynomials), we can write

h(X) = f(X)q(X) + r(X),

with q, r ∈ Q[X] and deg r < deg f . Now plugging in X = α gives r(α) = 0, which
contradicts the minimality of f unless r ≡ 0, so f | h.
The uniqueness of f thus follows. If g is another monic polynomial with the same prop-
erties, then f | g and g | f , so f(X) = cg(X) for some constant c, but c = 1 since both
are monic.

In our case, f is the unique irreducible polynomial with x0 as a root, thus f | h in Q[X];
that is h(X) = f(X)g(X) for some g(X) ∈ Q[X]. However, since f ∈ Z[X] and monic by
assumption, and h ∈ Z[X] obviously, we actually have g(X) ∈ Z[X] (this follows from the
Euclidean algorithm).
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