Individual Finals B Solution

1. For a binary string S (i.e. a string of 0 's and 1 's) that contains at least one 0 , we produce a binary string $f(S)$ as follows:

- If the substring 110 occurs in S, replace each instance of 110 with 01 to produce $f(S)$;
- Otherwise, replace the leftmost occurrence of 0 in S by 1 to produce $f(S)$.

Given binary string S of length n, we define the lifetime of S to be the number of times f can be applied to S until the resulting string contains no more 0's. For example,

$$
111000 \rightarrow 10100 \rightarrow 11100 \rightarrow 1010 \rightarrow 1110 \rightarrow 101 \rightarrow 111
$$

so the lifetime of 111000 is 6 . For a given $n \geq 2$, which binary string(s) of length n have the longest lifetime?

Proposed by Austen Mazenko

Solution: Let $g(S)=\#\{0$'s in $S\}+\#\{$ length of $S\}$. Importantly, $g(f(S)) \leq g(S)-1$: applying f to S will decrease its g-value by at least 1 . If we replace 110 by 01 in the string, k times, then $g(S)$ decreases by k, and if we replace 0 by $1, g(S)$ decreases by 1 .
Claim: Applying f to $S=00 \ldots 0, m$ times, will decrease the g-value by exactly m.
Proof: The only 'forms' of strings we can get from applying f repeatedly are $00 . .00,100 . .00$, $1100 \ldots 00$, and $0100 \ldots 00$. Applying f to any of these forms will bring you to another form. The only time we decrease g by 2 or more, is when we change 110 to 01 in 2 or more spots in the string, which never happens among these forms. So, g decreases by 1 every time.

Once we have this, $S_{n}=00 \ldots 00$ (n zeros) has the highest initial g-value (of $2 n$), and only decreases by 1 each time. Its final g-value is at most 2 (since all of its possible 'forms' have at most 21 's in it). Note that any string of length ≥ 2 can never change into the string ' 1 ' after applications of f. So, S_{n} has the highest possible initial g-value out of all length- n strings, has the lowest possible final g-value, and its g-value decreases the slowest, so its lifetime must be maximal, and its lifetime is $2 n-2$ (its g value decreases from $2 n$ to 2 , decreasing by exactly 1 under every application of f).
2. Let f be a polynomial with degree at most $n-1$. Show that

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} f(k)=0
$$

Proposed by Ben Zenker, solved by Atharva Pathak

Solution: It suffices to show this for the polynomials

$$
f(X)=X(X-1) \cdots(X-\ell+1)
$$

for $0 \leq \ell \leq n-1$, since all other polynomials of degree at most $n-1$ can be written as finite
linear combinations of them. We have

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \cdot k(k-1) \cdots(k-\ell+1) \\
= & \sum_{k=\ell}^{n} \frac{n!}{k!(n-k)!}(-1)^{k} \cdot k(k-1) \cdots(k-\ell+1) \\
= & \sum_{k=\ell}^{n} \frac{n!}{(k-\ell)!(n-k)!}(-1)^{k} \\
= & \frac{(-1)^{\ell} n!}{(n-\ell)!} \sum_{k=\ell}^{n} \frac{(n-\ell)!}{(k-\ell)!(n-k)!}(-1)^{k-\ell} 1^{n-k} \\
= & \frac{(-1)^{\ell} n!}{(n-\ell)!}(-1+1)^{n-\ell} \\
= & 0
\end{aligned}
$$

as desired.
3. Let $p>3$ be a prime and $k \geq 0$ an integer. Find the multiplicity of $X-1$ in the factorization of

$$
f(X)=X^{3 p^{k}-1}+X^{3 p^{k}-2}+\cdots+X+1
$$

modulo p; in other words, find the unique non-negative integer r such that $(X-1)^{r}$ divides $f(X)$ modulo p, but $(X-1)^{r+1}$ does not divide $f(X)$ modulo p.
Proposed by Michael Cheng and Steven Wang
Solution: First note

$$
f(X)=\frac{X^{3 p^{k}}-1}{X-1}
$$

The key trick is to make the substitution $X=Y+1$, so we are instead looking for the multiplicity of Y in

$$
f(Y)=\frac{(Y+1)^{3 p^{k}}-1}{Y}
$$

Now

$$
(Y+1)^{3 p^{k}}=\sum_{\ell=0}^{3 p^{k}}\binom{3 p^{k}}{\ell} Y^{\ell}
$$

and we claim the coefficient $\binom{3 p^{k}}{\ell}$ is divisible by p unless $p^{k} \mid \ell$.
We use the notation

$$
v_{p}(n)=\left\{k \in \mathbb{Z}_{\geq 0}: p^{k} \mid n \text { and } p^{k+1} \nmid n\right\} .
$$

It is well-known that

$$
v_{p}(n!)=\sum_{r=0}^{\infty}\left\lfloor\frac{n}{p^{r}}\right\rfloor
$$

Therefore

$$
v_{p}\left(\binom{3 p^{k}}{\ell}\right)=v_{p}\left(\frac{\left(3 p^{k}\right)!}{\ell!\left(3 p^{k}-\ell\right)!}\right)=\sum_{r=0}^{\infty} \underbrace{\left(\left\lfloor\frac{3 p^{k}}{p^{r}}\right\rfloor-\left\lfloor\frac{\ell}{p^{r}}\right\rfloor-\left\lfloor\frac{3 p^{k}-\ell}{p^{r}}\right\rfloor\right.}_{S_{r}} .
$$

We have three cases depending on r :

- $r>k$: then all three floor functions are 0 (here we used the assumption that $p>3$), so $S_{r}=0$.
- $r \leq k$: then $p^{r} \mid 3 p^{k}$, so $S_{r} \geq 0$. More careful analysis shows that $S_{r}=0$ iff $p^{r} \mid \ell$.

$$
\begin{aligned}
f(Y) & =\frac{(Y+1)^{3 p^{k}}-1}{Y} \\
& =\frac{1}{Y}\left[\sum_{\ell=0}^{3 p^{k}}\binom{3 p^{k}}{\ell} Y^{\ell}-1\right] \\
& \equiv \frac{1}{Y}\left(Y^{3 p^{k}}+A Y^{2 p^{k}}+A Y^{p^{k}}\right) \quad A=\binom{3 p^{k}}{2 p^{k}}=\binom{3 p^{k}}{p^{k}} \\
& =Y^{3 p^{k}-1}+A Y^{2 p^{k}-1}+A Y^{p^{k}-1},
\end{aligned}
$$

and $p \nmid A$, so the answer is $p^{k}-1$.

Remark. The $X=Y+1$ trick can be used to prove the cyclotomic polynomial $\Phi_{p^{k}}(X)=$ $X^{p-1}+\cdots+X+1$ is irreducible over \mathbb{Z}. In fact, one can check that $\Phi_{p^{k}}(Y+1)$ satisfies the Eisenstein criterion.

