
Individual Finals B Solution

1. For a binary string S (i.e. a string of 0’s and 1’s) that contains at least one 0, we produce a
binary string f(S) as follows:

• If the substring 110 occurs in S, replace each instance of 110 with 01 to produce f(S);

• Otherwise, replace the leftmost occurrence of 0 in S by 1 to produce f(S).

Given binary string S of length n, we define the lifetime of S to be the number of times f can
be applied to S until the resulting string contains no more 0’s. For example,

111000 → 10100 → 11100 → 1010 → 1110 → 101 → 111

so the lifetime of 111000 is 6. For a given n ≥ 2, which binary string(s) of length n have the
longest lifetime?

Proposed by Austen Mazenko

Solution: Let g(S) = #{0’s in S} + #{length of S}. Importantly, g(f(S)) ≤ g(S) − 1: ap-
plying f to S will decrease its g-value by at least 1. If we replace 110 by 01 in the string, k
times, then g(S) decreases by k, and if we replace 0 by 1, g(S) decreases by 1.
Claim: Applying f to S = 00...0, m times, will decrease the g-value by exactly m.
Proof: The only ‘forms’ of strings we can get from applying f repeatedly are 00...00, 100..00,
1100...00, and 0100...00. Applying f to any of these forms will bring you to another form. The
only time we decrease g by 2 or more, is when we change 110 to 01 in 2 or more spots in the
string, which never happens among these forms. So, g decreases by 1 every time.

Once we have this, Sn = 00...00 (n zeros) has the highest initial g-value (of 2n), and only
decreases by 1 each time. Its final g-value is at most 2 (since all of its possible ‘forms’ have at
most 2 1’s in it). Note that any string of length ≥ 2 can never change into the string ‘1’ after
applications of f . So, Sn has the highest possible initial g-value out of all length-n strings, has
the lowest possible final g-value, and its g-value decreases the slowest, so its lifetime must be
maximal, and its lifetime is 2n − 2 (its g value decreases from 2n to 2, decreasing by exactly
1 under every application of f).

2. Let f be a polynomial with degree at most n− 1. Show that

n∑
k=0

(
n

k

)
(−1)kf(k) = 0.

Proposed by Ben Zenker, solved by Atharva Pathak

Solution: It suffices to show this for the polynomials

f(X) = X(X − 1) · · · (X − ℓ+ 1)

for 0 ≤ ℓ ≤ n− 1, since all other polynomials of degree at most n− 1 can be written as finite
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linear combinations of them. We have

n∑
k=0

(
n

k

)
(−1)k · k(k − 1) · · · (k − ℓ+ 1)

=

n∑
k=ℓ

n!

k!(n− k)!
(−1)k · k(k − 1) · · · (k − ℓ+ 1)

=

n∑
k=ℓ

n!

(k − ℓ)!(n− k)!
(−1)k

=
(−1)ℓn!

(n− ℓ)!

n∑
k=ℓ

(n− ℓ)!

(k − ℓ)!(n− k)!
(−1)k−ℓ1n−k

=
(−1)ℓn!

(n− ℓ)!
(−1 + 1)n−ℓ

= 0,

as desired.

3. Let p > 3 be a prime and k ≥ 0 an integer. Find the multiplicity of X − 1 in the factorization
of

f(X) = X3pk−1 +X3pk−2 + · · ·+X + 1

modulo p; in other words, find the unique non-negative integer r such that (X − 1)r divides
f(X) modulo p, but (X − 1)r+1 does not divide f(X) modulo p.

Proposed by Michael Cheng and Steven Wang

Solution: First note

f(X) =
X3pk − 1

X − 1
.

The key trick is to make the substitution X = Y + 1, so we are instead looking for the
multiplicity of Y in

f(Y ) =
(Y + 1)3p

k − 1

Y
.

Now

(Y + 1)3p
k

=

3pk∑
ℓ=0

(
3pk

ℓ

)
Y ℓ,

and we claim the coefficient
(
3pk

ℓ

)
is divisible by p unless pk | ℓ.

We use the notation
vp(n) = {k ∈ Z≥0 : pk | n and pk+1 ∤ n}.

It is well-known that

vp(n!) =

∞∑
r=0

⌊
n

pr

⌋
.

Therefore

vp

((
3pk

ℓ

))
= vp

(
(3pk)!

ℓ!(3pk − ℓ)!

)
=

∞∑
r=0

(⌊
3pk

pr

⌋
−

⌊
ℓ

pr

⌋
−

⌊
3pk − ℓ

pr

⌋)
︸ ︷︷ ︸

Sr

.

We have three cases depending on r:
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• r > k: then all three floor functions are 0 (here we used the assumption that p > 3), so
Sr = 0.

• r ≤ k: then pr | 3pk, so Sr ≥ 0. More careful analysis shows that Sr = 0 iff pr | ℓ.

Therefore, vp

((
3pk

ℓ

))
= 0 iff pk | ℓ. Thus, modulo p, we have

f(Y ) =
(Y + 1)3p

k − 1

Y

=
1

Y

3pk∑
ℓ=0

(
3pk

ℓ

)
Y ℓ − 1


≡ 1

Y

(
Y 3pk

+AY 2pk

+AY pk
)

A =

(
3pk

2pk

)
=

(
3pk

pk

)
= Y 3pk−1 +AY 2pk−1 +AY pk−1,

and p ∤ A, so the answer is pk − 1 .

Remark. The X = Y +1 trick can be used to prove the cyclotomic polynomial Φpk(X) =
Xp−1 + · · ·+X + 1 is irreducible over Z. In fact, one can check that Φpk(Y + 1) satisfies
the Eisenstein criterion.
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