Individual Finals B

1. For a binary string S (i.e. a string of 0 's and 1 's) that contains at least one 0 , we produce a binary string $f(S)$ as follows:

- If the substring 110 occurs in S, replace each instance of 110 with 01 to produce $f(S)$;
- Otherwise, replace the leftmost occurrence of 0 in S by 1 to produce $f(S)$.

Given binary string S of length n, we define the lifetime of S to be the number of times f can be applied to S until the resulting string contains no more 0 's. For example,

$$
111000 \rightarrow 10100 \rightarrow 11100 \rightarrow 1010 \rightarrow 1110 \rightarrow 101 \rightarrow 111
$$

so the lifetime of 111000 is 6 . For a given $n \geq 2$, which binary string(s) of length n have the longest lifetime? As usual, you need to rigorously justify your answers.
2. Let f be a polynomial with degree at most $n-1$. Show that

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} f(k)=0
$$

3. Let $p>3$ be a prime and $k \geq 0$ an integer. Find the multiplicity of $X-1$ in the factorization of

$$
f(X)=X^{3 p^{k}-1}+X^{3 p^{k}-2}+\cdots+X+1
$$

modulo p; in other words, find the unique non-negative integer r such that $(X-1)^{r}$ divides $f(X)$ modulo p, but $(X-1)^{r+1}$ does not divide $f(X)$ modulo p.

