$P \cup M . C$

Number Theory A

1. Find the sum of all prime numbers p such that p divides

$$
\left(p^{2}+p+20\right)^{p^{2}+p+2}+4\left(p^{2}+p+22\right)^{p^{2}-p+4} .
$$

2. Compute the sum of all positive integers whose positive divisors sum to 186 .
3. Given $k \geq 1$, let p_{k} denote the k-th smallest prime number. If N is the number of ordered 4-tuples (a, b, c, d) of positive integers satisfying $a b c d=\prod_{k=1}^{2023} p_{k}$ with $a<b$ and $c<d$, find N $(\bmod 1000)$.
4. Find the number of ordered pairs (x, y) of integers with $0 \leq x<2023$ and $0 \leq y<2023$ such that $y^{3} \equiv x^{2}(\bmod 2023)$.
5. A positive integer $\ell \geq 2$ is called sweet if there exists a positive integer $n \geq 10$ such that when the leftmost nonzero decimal digit of n is deleted, the resulting number m satisfies $n=m \ell$. Let S denote the set of all sweet numbers ℓ. If the sum $\sum_{\ell \in S} \frac{1}{\ell-1}$ can be written as $\frac{A}{B}$ for relatively prime positive integers A, B, find $A+B$.
6. Given a positive integer ℓ, define the sequence $\left\{a_{n}^{(\ell)}\right\}_{n=1}^{\infty}$ such that $a_{n}^{(\ell)}=\left\lfloor n+\sqrt[\ell]{n}+\frac{1}{2}\right\rfloor$ for all positive integers n. Let S denote the set of positive integers that appear in all three of the sequences $\left\{a_{n}^{(2)}\right\}_{n=1}^{\infty},\left\{a_{n}^{(3)}\right\}_{n=1}^{\infty}$, and $\left\{a_{n}^{(4)}\right\}_{n=1}^{\infty}$. Find the sum of the elements of S that lie in the interval $[1,100]$.
7. For a positive integer n, let $f(n)$ be the number of integers m satisfying $0 \leq m \leq n-1$ such that there exists an integer solution to the congruence $x^{2} \equiv m(\bmod n)$. It is given that as k goes to ∞, the value of $f\left(225^{k}\right) / 225^{k}$ converges to some rational number p / q, where p, q are relatively prime positive integers. Find $p+q$.
8. For $n \geq 2$, let $\omega(n)$ denote the number of distinct prime factors of n. We set $\omega(1)=0$. Compute the absolute value of

$$
\sum_{n=1}^{160}(-1)^{\omega(n)}\left\lfloor\frac{160}{n}\right\rfloor
$$

Name:

Team:

Write answers in table below:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

