
Number Theory A Solutions

1. Find the sum of all prime numbers p such that p divides

(p2 + p+ 20)p
2+p+2 + 4(p2 + p+ 22)p

2−p+4.

Proposed by Sunay Joshi

Answer: 344

We claim that the primes are p = 2, 61, 281, yielding an answer of 2 + 61 + 281 = 344. First,
the expression is congruent to 204 + 4 · 224 modulo p by Fermat’s Little Theorem. Next, note
that by the Sophie-Germain Identity, we can rewrite the expression as 24 · (104 + 4 · 114) =
24 · (102+2 · 112− 2 · 10 · 11)(102+2 · 112+2 · 10 · 11), which equals 26 · 61 · 281. Since p divides
this product, p must be among {2, 61, 281}, and the result follows.

2. Compute the sum of all positive integers whose positive divisors sum to 186.

Proposed by Nancy Xu

Answer: 202

The sum of the divisors of an integer with prime factorization pn1
1 pn2

2 . . . pnk

k is given by (1 +
p1 + . . . pn1

1 )(1 + p2 + . . . pn2
2 ) . . . (1 + pk + . . . pnk

k ). We see that 186 = 2 · 3 · 31, so it has
factors 1, 2, 3, 6, 31, 62, 93, 186. It is clear that 1 and 2 cannot be written as the sum of powers
of a prime, so by trying out small primes, the only remaining possibilities are 186 = 6 · 31 =
(1 + 5)(1 + 2 + 4 + 8 + 16) and 186 = 3 · 62 = (1 + 2)(1 + 61). Thus our two numbers are
5 · 16 = 80 and 2 · 61 = 122, sum the sum is 80 + 122 = 202.

3. Given k ≥ 1, let pk denote the k-th smallest prime number. If N is the number of ordered

4-tuples (a, b, c, d) of positive integers satisfying abcd =
2023∏
k=1

pk with a < b and c < d, find N

(mod 1000).

Proposed by Sunay Joshi

Answer: 112

We claim that if n ≥ 2 is square-free, then the number of ordered 4-tuples (a, b, c, d) satisfying
abcd = n with a < b and c < d is exactly 1

4τ(n)
2 − 1

2τ(n). To see this, note that a 4-tuple

(a, b, c, d) coresponds to a choice of divisor d1 = ab of n. By symmetry, there are τ(d1)
2 ways

to pick the pair (a, b) with a < b. Similarly there are τ(n/d1)
2 ways to pick (c, d) with c < d.

Therefore the total number of 4-tuples is (
∑

d1|n
τ(d1)

2
τ(n/d1)

2 )−2 · τ(1)2 · τ(n)2 , where we subtract

the terms corresponding to d1 = 1, n. Since n is square-free, we have gcd(d1, n/d1) = 1, hence
τ(d1)τ(n/d1) = τ(n) and the above reduces to 1

4τ(n)
2 − 1

2τ(n), as claimed.

Returning to the problem, note that for n =
∏2023

k=1 pk, we have τ(n) = 22023, hence N =
22·2023−2 − 22023−1 = 22022(22022 − 1). This is clearly 0 (mod 8). By Euler’s Theorem, we see
that N ≡ 222(222 − 1) ≡ 482(482 − 1) ≡ 112 (mod 125). By the Chinese Remainder Theorem,
N ≡ 112 (mod 1000), our answer.

4. Find the number of ordered pairs (x, y) of integers with 0 ≤ x < 2023 and 0 ≤ y < 2023 such
that y3 ≡ x2 (mod 2023).

Proposed by Brandon Cho

Answer: 3927
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Since 2023 = 7 · 172, by the Chinese Remainder Theorem it suffices to consider the pair of
congruences y3 ≡ x2 (mod 7) and y3 ≡ x2 (mod 172).

For the former, note that since x2 ∈ {0, 1, 2, 4} and y3 ∈ {0, 1,−1}, we must have y3 ≡ x2 ≡ 0
or y3 ≡ x2 ≡ 1. The former corresponds to (0, 0). The latter is satisfied when x ∈ {1,−1} and
y ∈ {1, 2, 4}. This yields 6 pairs. Thus this case has 7 solutions.

For the latter congruence, we consider two cases. The first case is when 17 does not divide
y, so that 17 does not divide x. Further the map y 7→ y3 is a bijection of the set of units of
Z/172Z. Therefore each choice of unit x corresponds to a unique solution for y. Since there
are 172 − 17 units mod 172, we have a total of 172 − 17 pairs in this case. The second case
is when 17 divides y, hence 17 divides x. Any such pair (x, y) satisfies the congruence since
both sides are 0. It follows that there are 17 · 17 pairs in this third case. Summing, we find
2 · 172 − 17 pairs.

Finally, we multiply the number of solutions to each of the two congruences to find an answer
of 7 · (2 · 172 − 17) = 3927.

5. A positive integer ℓ ≥ 2 is called sweet if there exists a positive integer n ≥ 10 such that when
the leftmost nonzero decimal digit of n is deleted, the resulting number m satisfies n = mℓ. Let
S denote the set of all sweet numbers ℓ. If the sum

∑
ℓ∈S

1
ℓ−1 can be written as A

B for relatively

prime positive integers A,B, find A+B.

Proposed by Sunay Joshi

Answer: 71

Let νp(t) denote the highest power of the prime p dividing t. We claim that ℓ ≥ 2 is sweet iff:
(i) all prime factors of ℓ − 1 are elements of {2, 3, 5, 7}, (ii) ν3(ℓ − 1) ≤ 2, (iii) ν7(ℓ − 1) ≤ 1,
(iv) 3 · 7 does not divide ℓ − 1, and (v) ℓ − 1 ̸= 1, 3, 7, 9. To see this, suppose that n = mℓ,
where m is the number obtained by deleting the leftmost digit of n. Write n = 10ka + b,
where a ∈ {1, . . . , 9} is the leftmost digit of n, so that m = b. Then n = mℓ is equivalent to
10ka+ b = ℓb, or (ℓ− 1)b = 10ka for some k-digit number b.

The condition (ℓ− 1)b = 10ka for an arbitrary positive integer b is equivalent to (ℓ− 1)|10ka
for some a ∈ {1, . . . , 9}, which is equivalent to the first four conditions above.

If ℓ − 1 ≥ 10, then (ℓ − 1)b = 10ka for some k-digit number b is equivalent to (ℓ − 1)|10ka,
since the equality forces b to have at most k digits: b ≤ 10k · 9/10 < 10k. If ℓ− 1 ∈ {1, . . . , 9},
then in the cases ℓ− 1 ∈ {1, 3, 7, 9}, b must have at least k digits. The value of b in each case

is at least 10k

1 , 3·10k
3 , 7·10k

7 , and 9·10k
9 , respectively.

Thus ℓ ∈ S iff the five conditions above hold. In terms of prime factorization, ℓ ∈ S iff ℓ− 1 ̸=
1, 3, 7, 9 and ℓ − 1 = 2x5y3z7w, where x ≥ 0, y ≥ 0, and (z, w) ∈ {(0, 0), (0, 1), (1, 0), (2, 0)}.
Splitting the desired sum into a product over primes, we find∑

ℓ∈S

1

ℓ− 1
=

(∑
x≥0

1

2x

)(∑
y≥0

1

5y

)(
1 +

1

3
+

1

32
+

1

7

)
− (

1

1
+

1

3
+

1

7
+

1

9
),

where we subtract terms corresponding to the cases ℓ− 1 = 1, 3, 7, 9. By the geometric series
formula, this equals 250

63 − 100
63 = 50

21 . Thus our answer is 50 + 21 = 71.

6. Given a positive integer ℓ, define the sequence {a(ℓ)n }∞n=1 such that a
(ℓ)
n = ⌊n + ℓ

√
n + 1

2⌋ for
all positive integers n. Let S denote the set of positive integers that appear in all three of the

sequences {a(2)n }∞n=1, {a
(3)
n }∞n=1, and {a(4)n }∞n=1. Find the sum of the elements of S that lie in

the interval [1, 100].

Proposed by Sunay Joshi
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Answer: 4451

We claim that a number k+1 is skipped by the sequence {a(ℓ)n }∞n=1 iff k+1 = m+ ⌈(m+ 1
2 )

ℓ⌉
for some m ≥ 0. To see this, suppose k + 1 is skipped by the sequence, so that an = k and
an+1 ≥ k + 2. The condition an = k is equivalent to k ≤ n + ℓ

√
n + 1

2 < k + 1 and thus
(m − 1

2 )
k ≤ n < (m + 1

2 )
ℓ, where m = k − n. The condition an+1 ≥ k + 2 is equivalent

to k + 2 ≤ (n + 1) + ℓ
√
n+ 1 + 1

2 , which can be rewritten as (m + 1
2 )

ℓ − 1 ≤ n. Combining
these two inequality chains, we find that n = ⌈(m + 1

2 )
ℓ⌉ − 1, hence the skipped number is

k + 1 = m+ ⌈(m+ 1
2 )

ℓ⌉, as claimed.

It follows that the numbers skipped in the sequence for ℓ = 2 are m+⌈m2+m+ 1
4⌉ = (m+1)2;

the numbers skipped for ℓ = 3 are m+ ⌈m3 + 3
2m

2 + 3
4m+ 1

8⌉ = m+m3 + ⌈ 3
2m

2 + 3
4m+ 1

8⌉;
and the numbers skipped for ℓ = 4 are m + ⌈m4 + 2m3 + 3

2m
2 + 1

2m + 1
16⌉ = m + m4 +

2m3 + ⌈ 3
2m

2 + 1
2m + 1

16⌉. The skipped numbers for ℓ = 2 are 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
the skipped numbers for ℓ = 3 are 1, 5, 18, 46, 96, and the skipped numbers for ℓ = 4 are
1, 7, 42. The sum of (distinct) numbers that are skipped in at least one of the sequences can
be seen to be 599, hence the sum of the numbers in [1, 100] that are not skipped in any list is
5050− 599 = 4451, our answer.

7. For a positive integer n, let f(n) be the number of integers m satisfying 0 ≤ m ≤ n − 1 such
that there exists an integer solution to the congruence x2 ≡ m (mod n). It is given that as k
goes to ∞, the value of f(225k)/225k converges to some rational number p/q, where p, q are
relatively prime positive integers. Find p+ q.

Proposed by Frank Lu

Answer: 37

First, suppose that m,n are relatively prime. Then, notice that for every pair of residues a
(mod m) and b (mod n), if x2 ≡ a (mod m) and x2 ≡ b (mod n) both have solutions, then
the corresponding residue r modulo mn (through using Chinese Remainder Theorem) is such
that x2 ≡ r (mod mn). Similarly, if there is a solution for this residue, then there is such a
solution for the residues of r (mod m) and r (mod n). Therefore, f(mn) = f(m)f(n). It thus
suffices for us to compute f(52k) and f(32k). We will perform this computation in generality
for a prime p.

Suppose that x2 ≡ b (mod p2k) has a solution, where 0 ≤ b < p2k. Then, notice that if b is
divisible by p, then it is divisible by p2. From here, it follows that, writing b = b′p2, we must
have a solution to x2 ≡ b′ (mod p2k). Therefore, using this logic, f(p2k) is equal to the sum
of the number of residues b relatively prime to p so that x2 ≡ b (mod p2i) has a solution, for
0 ≤ i ≤ k.

For i = 0 there is exactly one such solution, namely b ≡ 1 (mod 1). Now, we claim that
there are p2i−1(p− 1)/2 such solutions for i. To show this, we inductively argue the following:
given p > 2 is a prime and b relatively prime to p, if x2 ≡ b (mod pi) has a solution, then
x2 ≡ b+ cpi (mod pi+1) has a solution for c = 0, 1, . . . , p− 1. Indeed, observe that, given x′ so

x′2 ≡ b (mod pi), suppose that x′2 ≡ b+ api (mod pi+1). Then, (x′ + dpi)2 ≡ b+ api +2x′dpi

(mod pi+1). For this to equal b+ cpi modulo pi+1, we need for x′d+ a ≡ c (mod p). But as b
is relatively prime to p, so is x′; therefore this has exactly one such solution.

In particular, this means that pi+1 has p times as many residues b satisfying the above condition
than pi. So recalling that for p there are (p−1)/2 such residues, it follows that pi has pi−1(p−
1)/2 such residues.

From here, we compute that f(p2k) = 1+ p−1
2

k−1∑
i=0

p2i+1. Therefore, note that f(p2k)/p2k equals
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p−2k+ p−1
2

k−1∑
i=0

p2i+1−2k = p−2k+ p−1
2

k−1∑
i=0

p−2i−1. As k goes to∞, this becomes p−1
2

∞∑
i=0

p−2i−1 =

p−1
2

p−1

1−p−2 = p
2(p+1) .

Our desired fraction, by multiplying, is thus 3
8

5
12 = 5

32 , so p+ q = 37.

8. For n ≥ 2, let ω(n) denote the number of distinct prime factors of n. We set ω(1) = 0.
Compute the absolute value of

160∑
n=1

(−1)ω(n)
⌊160

n

⌋
.

Proposed by Julian Shah

Answer: 22

⌊ 160
n ⌋ counts the number of multiples of n less than or equal to 160. Instead of summing over

multiples of integers less than 160, we can sum over divisors of integers less than 160:

160∑
n=1

(−1)Ω(n)
⌊160

n

⌋
=

160∑
n=1

∑
d|n

(−1)Ω(d)

Note that since f(n) = (−1)Ω(n) is multiplicative, the function g(n) =
∑

d|n f(n) is also

multiplicative. We can see that g(pk) = −(k − 1) for any prime p; in particular, g(p) = 0.
Thus g vanishes on any n that has a prime divisor with exponent 1, and we can ignore all
such integers in computing the sum

∑160
n=1 g(n). The integers from 1 to 160 that have no prime

divisor of exponent 1 are generated multiplicatively by: the prime powers {4, 8, 16, 32, 64, 128},
{9, 27, 81}, {25, 125}, {49}, and {121}. We see that most of these generators can’t be multiplied
by anything else without exceeding 160. Thus we are then left to do casework on the generators
{4, 8, 16}, {9, 27}, and {25}, which is much simpler. This yields the additional values of
4 · 9 = 36, 4 · 27 = 108, 4 · 25 = 100, 8 · 9 = 72, 16 · 9 = 144. We must also include n = 1 in our
sum. Summing, we find an value of 1 + (−1− 2− 3− 4− 5− 6) + (−1− 2− 3) + (−1− 2) +
(−1) + (−1) + (1 + 2 + 1 + 2 + 3) = −22, so our answer is 22.
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