P U M ㄷ. C

Number Theory A Solutions

1. Find the sum of all prime numbers p such that p divides

$$
\left(p^{2}+p+20\right)^{p^{2}+p+2}+4\left(p^{2}+p+22\right)^{p^{2}-p+4}
$$

Proposed by Sunay Joshi

Answer: 344
We claim that the primes are $p=2,61,281$, yielding an answer of $2+61+281=344$. First, the expression is congruent to $20^{4}+4 \cdot 22^{4}$ modulo p by Fermat's Little Theorem. Next, note that by the Sophie-Germain Identity, we can rewrite the expression as $2^{4} \cdot\left(10^{4}+4 \cdot 11^{4}\right)=$ $2^{4} \cdot\left(10^{2}+2 \cdot 11^{2}-2 \cdot 10 \cdot 11\right)\left(10^{2}+2 \cdot 11^{2}+2 \cdot 10 \cdot 11\right)$, which equals $2^{6} \cdot 61 \cdot 281$. Since p divides this product, p must be among $\{2,61,281\}$, and the result follows.
2. Compute the sum of all positive integers whose positive divisors sum to 186.

Proposed by Nancy Xu
Answer: 202
The sum of the divisors of an integer with prime factorization $p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}$ is given by $(1+$ $\left.p_{1}+\ldots p_{1}^{n_{1}}\right)\left(1+p_{2}+\ldots p_{2}^{n_{2}}\right) \ldots\left(1+p_{k}+\ldots p_{k}^{n_{k}}\right)$. We see that $186=2 \cdot 3 \cdot 31$, so it has factors $1,2,3,6,31,62,93,186$. It is clear that 1 and 2 cannot be written as the sum of powers of a prime, so by trying out small primes, the only remaining possibilities are $186=6 \cdot 31=$ $(1+5)(1+2+4+8+16)$ and $186=3 \cdot 62=(1+2)(1+61)$. Thus our two numbers are $5 \cdot 16=80$ and $2 \cdot 61=122$, sum the sum is $80+122=202$.
3. Given $k \geq 1$, let p_{k} denote the k-th smallest prime number. If N is the number of ordered 4-tuples (a, b, c, d) of positive integers satisfying $a b c d=\prod_{k=1}^{2023} p_{k}$ with $a<b$ and $c<d$, find N $(\bmod 1000)$.

Proposed by Sunay Joshi

Answer: 112
We claim that if $n \geq 2$ is square-free, then the number of ordered 4-tuples (a, b, c, d) satisfying $a b c d=n$ with $a<b$ and $c<d$ is exactly $\frac{1}{4} \tau(n)^{2}-\frac{1}{2} \tau(n)$. To see this, note that a 4 -tuple (a, b, c, d) coresponds to a choice of divisor $d_{1}=a b$ of n. By symmetry, there are $\frac{\tau\left(d_{1}\right)}{2}$ ways to pick the pair (a, b) with $a<b$. Similarly there are $\frac{\tau\left(n / d_{1}\right)}{2}$ ways to pick (c, d) with $c<d$. Therefore the total number of 4-tuples is $\left(\sum_{d_{1} \mid n} \frac{\tau\left(d_{1}\right)}{2} \frac{\tau\left(n / d_{1}\right)}{2}\right)-2 \cdot \frac{\tau(1)}{2} \cdot \frac{\tau(n)}{2}$, where we subtract the terms corresponding to $d_{1}=1, n$. Since n is square-free, we have $\operatorname{gcd}\left(d_{1}, n / d_{1}\right)=1$, hence $\tau\left(d_{1}\right) \tau\left(n / d_{1}\right)=\tau(n)$ and the above reduces to $\frac{1}{4} \tau(n)^{2}-\frac{1}{2} \tau(n)$, as claimed.
Returning to the problem, note that for $n=\prod_{k=1}^{2023} p_{k}$, we have $\tau(n)=2^{2023}$, hence $N=$ $2^{2 \cdot 2023-2}-2^{2023-1}=2^{2022}\left(2^{2022}-1\right)$. This is clearly $0(\bmod 8)$. By Euler's Theorem, we see that $N \equiv 2^{22}\left(2^{22}-1\right) \equiv 48^{2}\left(48^{2}-1\right) \equiv 112(\bmod 125)$. By the Chinese Remainder Theorem, $N \equiv 112(\bmod 1000)$, our answer.
4. Find the number of ordered pairs (x, y) of integers with $0 \leq x<2023$ and $0 \leq y<2023$ such that $y^{3} \equiv x^{2}(\bmod 2023)$.
Proposed by Brandon Cho
Answer: 3927

P U M ㄷC

Since $2023=7 \cdot 17^{2}$, by the Chinese Remainder Theorem it suffices to consider the pair of congruences $y^{3} \equiv x^{2}(\bmod 7)$ and $y^{3} \equiv x^{2}\left(\bmod 17^{2}\right)$.
For the former, note that since $x^{2} \in\{0,1,2,4\}$ and $y^{3} \in\{0,1,-1\}$, we must have $y^{3} \equiv x^{2} \equiv 0$ or $y^{3} \equiv x^{2} \equiv 1$. The former corresponds to $(0,0)$. The latter is satisfied when $x \in\{1,-1\}$ and $y \in\{1,2,4\}$. This yields 6 pairs. Thus this case has 7 solutions.
For the latter congruence, we consider two cases. The first case is when 17 does not divide y, so that 17 does not divide x. Further the map $y \mapsto y^{3}$ is a bijection of the set of units of $\mathbb{Z} / 17^{2} \mathbb{Z}$. Therefore each choice of unit x corresponds to a unique solution for y. Since there are $17^{2}-17$ units $\bmod 17^{2}$, we have a total of $17^{2}-17$ pairs in this case. The second case is when 17 divides y, hence 17 divides x. Any such pair (x, y) satisfies the congruence since both sides are 0 . It follows that there are $17 \cdot 17$ pairs in this third case. Summing, we find $2 \cdot 17^{2}-17$ pairs.
Finally, we multiply the number of solutions to each of the two congruences to find an answer of $7 \cdot\left(2 \cdot 17^{2}-17\right)=3927$.
5. A positive integer $\ell \geq 2$ is called sweet if there exists a positive integer $n \geq 10$ such that when the leftmost nonzero decimal digit of n is deleted, the resulting number m satisfies $n=m \ell$. Let S denote the set of all sweet numbers ℓ. If the sum $\sum_{\ell \in S} \frac{1}{\ell-1}$ can be written as $\frac{A}{B}$ for relatively prime positive integers A, B, find $A+B$.

Proposed by Sunay Joshi

Answer: 71
Let $\nu_{p}(t)$ denote the highest power of the prime p dividing t. We claim that $\ell \geq 2$ is sweet iff: (i) all prime factors of $\ell-1$ are elements of $\{2,3,5,7\}$, (ii) $\nu_{3}(\ell-1) \leq 2$, (iii) $\nu_{7}(\ell-1) \leq 1$, (iv) $3 \cdot 7$ does not divide $\ell-1$, and (v) $\ell-1 \neq 1,3,7,9$. To see this, suppose that $n=m \ell$, where m is the number obtained by deleting the leftmost digit of n. Write $n=10^{k} a+b$, where $a \in\{1, \ldots, 9\}$ is the leftmost digit of n, so that $m=b$. Then $n=m \ell$ is equivalent to $10^{k} a+b=\ell b$, or $(\ell-1) b=10^{k} a$ for some k-digit number b.
The condition $(\ell-1) b=10^{k} a$ for an arbitrary positive integer b is equivalent to $(\ell-1) \mid 10^{k} a$ for some $a \in\{1, \ldots, 9\}$, which is equivalent to the first four conditions above.
If $\ell-1 \geq 10$, then $(\ell-1) b=10^{k} a$ for some k-digit number b is equivalent to $(\ell-1) \mid 10^{k} a$, since the equality forces b to have at most k digits: $b \leq 10^{k} \cdot 9 / 10<10^{k}$. If $\ell-1 \in\{1, \ldots, 9\}$, then in the cases $\ell-1 \in\{1,3,7,9\}, b$ must have at least k digits. The value of b in each case is at least $\frac{10^{k}}{1}, \frac{3 \cdot 10^{k}}{3}, \frac{7 \cdot 10^{k}}{7}$, and $\frac{9 \cdot 10^{k}}{9}$, respectively.
Thus $\ell \in S$ iff the five conditions above hold. In terms of prime factorization, $\ell \in S$ iff $\ell-1 \neq$ $1,3,7,9$ and $\ell-1=2^{x} 5^{y} 3^{z} 7^{w}$, where $x \geq 0, y \geq 0$, and $(z, w) \in\{(0,0),(0,1),(1,0),(2,0)\}$. Splitting the desired sum into a product over primes, we find

$$
\sum_{\ell \in S} \frac{1}{\ell-1}=\left(\sum_{x \geq 0} \frac{1}{2^{x}}\right)\left(\sum_{y \geq 0} \frac{1}{5^{y}}\right)\left(1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{7}\right)-\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{7}+\frac{1}{9}\right)
$$

where we subtract terms corresponding to the cases $\ell-1=1,3,7,9$. By the geometric series formula, this equals $\frac{250}{63}-\frac{100}{63}=\frac{50}{21}$. Thus our answer is $50+21=71$.
6. Given a positive integer ℓ, define the sequence $\left\{a_{n}^{(\ell)}\right\}_{n=1}^{\infty}$ such that $a_{n}^{(\ell)}=\left\lfloor n+\sqrt[\ell]{n}+\frac{1}{2}\right\rfloor$ for all positive integers n. Let S denote the set of positive integers that appear in all three of the sequences $\left\{a_{n}^{(2)}\right\}_{n=1}^{\infty},\left\{a_{n}^{(3)}\right\}_{n=1}^{\infty}$, and $\left\{a_{n}^{(4)}\right\}_{n=1}^{\infty}$. Find the sum of the elements of S that lie in the interval $[1,100]$.

Answer: 4451
We claim that a number $k+1$ is skipped by the sequence $\left\{a_{n}^{(\ell)}\right\}_{n=1}^{\infty}$ iff $k+1=m+\left\lceil\left(m+\frac{1}{2}\right)^{\ell}\right\rceil$ for some $m \geq 0$. To see this, suppose $k+1$ is skipped by the sequence, so that $a_{n}=k$ and $a_{n+1} \geq k+2$. The condition $a_{n}=k$ is equivalent to $k \leq n+\sqrt[\ell]{n}+\frac{1}{2}<k+1$ and thus $\left(m-\frac{1}{2}\right)^{k} \leq n<\left(m+\frac{1}{2}\right)^{\ell}$, where $m=k-n$. The condition $a_{n+1} \geq k+2$ is equivalent to $k+2 \leq(n+1)+\sqrt[\ell]{n+1}+\frac{1}{2}$, which can be rewritten as $\left(m+\frac{1}{2}\right)^{\ell}-1 \leq n$. Combining these two inequality chains, we find that $n=\left\lceil\left(m+\frac{1}{2}\right)^{\ell}\right\rceil-1$, hence the skipped number is $k+1=m+\left\lceil\left(m+\frac{1}{2}\right)^{\ell}\right\rceil$, as claimed.
It follows that the numbers skipped in the sequence for $\ell=2$ are $m+\left\lceil m^{2}+m+\frac{1}{4}\right\rceil=(m+1)^{2}$; the numbers skipped for $\ell=3$ are $m+\left\lceil m^{3}+\frac{3}{2} m^{2}+\frac{3}{4} m+\frac{1}{8}\right\rceil=m+m^{3}+\left\lceil\frac{3}{2} m^{2}+\frac{3}{4} m+\frac{1}{8}\right\rceil$; and the numbers skipped for $\ell=4$ are $m+\left\lceil m^{4}+2 m^{3}+\frac{3}{2} m^{2}+\frac{1}{2} m+\frac{1}{16}\right\rceil=m+m^{4}+$ $2 m^{3}+\left\lceil\frac{3}{2} m^{2}+\frac{1}{2} m+\frac{1}{16}\right\rceil$. The skipped numbers for $\ell=2$ are $1,4,9,16,25,36,49,64,81,100$, the skipped numbers for $\ell=3$ are $1,5,18,46,96$, and the skipped numbers for $\ell=4$ are $1,7,42$. The sum of (distinct) numbers that are skipped in at least one of the sequences can be seen to be 599, hence the sum of the numbers in $[1,100]$ that are not skipped in any list is $5050-599=4451$, our answer.
7. For a positive integer n, let $f(n)$ be the number of integers m satisfying $0 \leq m \leq n-1$ such that there exists an integer solution to the congruence $x^{2} \equiv m(\bmod n)$. It is given that as k goes to ∞, the value of $f\left(225^{k}\right) / 225^{k}$ converges to some rational number p / q, where p, q are relatively prime positive integers. Find $p+q$.

Proposed by Frank Lu
Answer: 37
First, suppose that m, n are relatively prime. Then, notice that for every pair of residues a $(\bmod m)$ and $b(\bmod n)$, if $x^{2} \equiv a(\bmod m)$ and $x^{2} \equiv b(\bmod n)$ both have solutions, then the corresponding residue r modulo $m n$ (through using Chinese Remainder Theorem) is such that $x^{2} \equiv r(\bmod m n)$. Similarly, if there is a solution for this residue, then there is such a solution for the residues of $r(\bmod m)$ and $r(\bmod n)$. Therefore, $f(m n)=f(m) f(n)$. It thus suffices for us to compute $f\left(5^{2 k}\right)$ and $f\left(3^{2 k}\right)$. We will perform this computation in generality for a prime p.
Suppose that $x^{2} \equiv b\left(\bmod p^{2 k}\right)$ has a solution, where $0 \leq b<p^{2 k}$. Then, notice that if b is divisible by p, then it is divisible by p^{2}. From here, it follows that, writing $b=b^{\prime} p^{2}$, we must have a solution to $x^{2} \equiv b^{\prime}\left(\bmod p^{2 k}\right)$. Therefore, using this logic, $f\left(p^{2 k}\right)$ is equal to the sum of the number of residues b relatively prime to p so that $x^{2} \equiv b\left(\bmod p^{2 i}\right)$ has a solution, for $0 \leq i \leq k$.
For $i=0$ there is exactly one such solution, namely $b \equiv 1(\bmod 1)$. Now, we claim that there are $p^{2 i-1}(p-1) / 2$ such solutions for i. To show this, we inductively argue the following: given $p>2$ is a prime and b relatively prime to p, if $x^{2} \equiv b\left(\bmod p^{i}\right)$ has a solution, then $x^{2} \equiv b+c p^{i}\left(\bmod p^{i+1}\right)$ has a solution for $c=0,1, \ldots, p-1$. Indeed, observe that, given x^{\prime} so $x^{\prime 2} \equiv b\left(\bmod p^{i}\right)$, suppose that ${x^{\prime}}^{2} \equiv b+a p^{i}\left(\bmod p^{i+1}\right)$. Then, $\left(x^{\prime}+d p^{i}\right)^{2} \equiv b+a p^{i}+2 x^{\prime} d p^{i}$ $\left(\bmod p^{i+1}\right)$. For this to equal $b+c p^{i}$ modulo p^{i+1}, we need for $x^{\prime} d+a \equiv c(\bmod p)$. But as b is relatively prime to p, so is x^{\prime}; therefore this has exactly one such solution.
In particular, this means that p^{i+1} has p times as many residues b satisfying the above condition than p^{i}. So recalling that for p there are $(p-1) / 2$ such residues, it follows that p^{i} has $p^{i-1}(p-$ $1) / 2$ such residues.
From here, we compute that $f\left(p^{2 k}\right)=1+\frac{p-1}{2} \sum_{i=0}^{k-1} p^{2 i+1}$. Therefore, note that $f\left(p^{2 k}\right) / p^{2 k}$ equals
$p^{-2 k}+\frac{p-1}{2} \sum_{i=0}^{k-1} p^{2 i+1-2 k}=p^{-2 k}+\frac{p-1}{2} \sum_{i=0}^{k-1} p^{-2 i-1}$. As k goes to ∞, this becomes $\frac{p-1}{2} \sum_{i=0}^{\infty} p^{-2 i-1}=$ $\frac{p-1}{2} \frac{p^{-1}}{1-p^{-2}}=\frac{p}{2(p+1)}$.
Our desired fraction, by multiplying, is thus $\frac{3}{8} \frac{5}{12}=\frac{5}{32}$, so $p+q=37$.
8. For $n \geq 2$, let $\omega(n)$ denote the number of distinct prime factors of n. We set $\omega(1)=0$. Compute the absolute value of

$$
\sum_{n=1}^{160}(-1)^{\omega(n)}\left\lfloor\frac{160}{n}\right\rfloor .
$$

Proposed by Julian Shah
Answer: 22
$\left\lfloor\frac{160}{n}\right\rfloor$ counts the number of multiples of n less than or equal to 160 . Instead of summing over multiples of integers less than 160 , we can sum over divisors of integers less than 160:

$$
\sum_{n=1}^{160}(-1)^{\Omega(n)}\left\lfloor\frac{160}{n}\right\rfloor=\sum_{n=1}^{160} \sum_{d \mid n}(-1)^{\Omega(d)}
$$

Note that since $f(n)=(-1)^{\Omega(n)}$ is multiplicative, the function $g(n)=\sum_{d \mid n} f(n)$ is also multiplicative. We can see that $g\left(p^{k}\right)=-(k-1)$ for any prime p; in particular, $g(p)=0$. Thus g vanishes on any n that has a prime divisor with exponent 1 , and we can ignore all such integers in computing the sum $\sum_{n=1}^{160} g(n)$. The integers from 1 to 160 that have no prime divisor of exponent 1 are generated multiplicatively by: the prime powers $\{4,8,16,32,64,128\}$, $\{9,27,81\},\{25,125\},\{49\}$, and $\{121\}$. We see that most of these generators can't be multiplied by anything else without exceeding 160 . Thus we are then left to do casework on the generators $\{4,8,16\},\{9,27\}$, and $\{25\}$, which is much simpler. This yields the additional values of $4 \cdot 9=36,4 \cdot 27=108,4 \cdot 25=100,8 \cdot 9=72,16 \cdot 9=144$. We must also include $n=1$ in our sum. Summing, we find an value of $1+(-1-2-3-4-5-6)+(-1-2-3)+(-1-2)+$ $(-1)+(-1)+(1+2+1+2+3)=-22$, so our answer is 22 .

