P U M ㄷC

Number Theory B

1. Suppose that the greatest common divisor of n and 5040 is equal to 120 . Determine the sum of the four smallest possible positive integers n.
2. Find the sum of the 23 smallest positive integers that are 4 more than a multiple of 23 and whose last two digits are 23 .
3. Find the sum of all prime numbers p such that p divides

$$
\left(p^{2}+p+20\right)^{p^{2}+p+2}+4\left(p^{2}+p+22\right)^{p^{2}-p+4} .
$$

4. Compute the sum of all positive integers whose positive divisors sum to 186.
5. Given $k \geq 1$, let p_{k} denote the k-th smallest prime number. If N is the number of ordered 4-tuples (a, b, c, d) of positive integers satisfying $a b c d=\prod_{k=1}^{2023} p_{k}$ with $a<b$ and $c<d$, find N $(\bmod 1000)$.
6. Find the number of ordered pairs (x, y) of integers with $0 \leq x<2023$ and $0 \leq y<2023$ such that $y^{3} \equiv x^{2}(\bmod 2023)$.
7. A positive integer $\ell \geq 2$ is called sweet if there exists a positive integer $n \geq 10$ such that when the leftmost nonzero decimal digit of n is deleted, the resulting number m satisfies $n=m \ell$. Let S denote the set of all sweet numbers ℓ. If the sum $\sum_{\ell \in S} \frac{1}{\ell-1}$ can be written as $\frac{A}{B}$ for relatively prime positive integers A, B, find $A+B$.
8. Given a positive integer ℓ, define the sequence $\left\{a_{n}^{(\ell)}\right\}_{n=1}^{\infty}$ such that $a_{n}^{(\ell)}=\left\lfloor n+\sqrt[\ell]{n}+\frac{1}{2}\right\rfloor$ for all positive integers n. Let S denote the set of positive integers that appear in all three of the sequences $\left\{a_{n}^{(2)}\right\}_{n=1}^{\infty},\left\{a_{n}^{(3)}\right\}_{n=1}^{\infty}$, and $\left\{a_{n}^{(4)}\right\}_{n=1}^{\infty}$. Find the sum of the elements of S that lie in the interval $[1,100]$.

Name:

Team:

Write answers in table below:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

