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Number Theory B Solutions

1. Suppose that the greatest common divisor of n and 5040 is equal to 120. Determine the sum
of the four smallest possible positive integers n.

Proposed by Frank Lu

Answer:

Note that for the greatest common divisor of n and 5040 to equal 120, we need n = 120d, where
d is relatively prime to 5102400 = 42. But then note that this means that d can’t be divisible by
2,3, or 7. This yields us that d = 1,5, 11,13, yielding the sum of n as 120(1 + 5+ 11 + 13) =

120(30) = 3600.

2. Find the sum of the 23 smallest positive integers that are 4 more than a multiple of 23 and
whose last two digits are 23.

Proposed by Julian Shah

Answer:

We want the 23 smallest integers congruent to 23 (mod 100) and 4 (mod 23). We can use
CRT to find that such integers must be 1223 (mod 2300). Our answer is

1
23-1223+2300(0+1+...+22):23-1223+§-2300-22~23:610029

3. Find the sum of all prime numbers p such that p divides
(p% + p+ 2007 PF2 4 4(p? 4 p 4 22)7° P,

Proposed by Sunay Joshi

Answer:

We claim that the primes are p = 2,61, 281, yielding an answer of 2 4+ 61 + 281 = 344. First,
the expression is congruent to 20* + 4 - 224 modulo p by Fermat’s Little Theorem. Next, note
that by the Sophie-Germain Identity, we can rewrite the expression as 2% - (10* + 4 - 11%) =
24.(102+2-112—-2-10-11)(10> +2-112+2-10- 11), which equals 2°-61-281. Since p divides
this product, p must be among {2,61,281}, and the result follows.

4. Compute the sum of all positive integers whose positive divisors sum to 186.

Proposed by Nancy Xu

Answer:

The sum of the divisors of an integer with prime factorization pi'py?...p:* is given by (1 +
pr+ i) A +pe+.p3?) . (L4 pr+ ... pp*). We see that 186 = 2 -3 - 31, so it has
factors 1,2, 3,6,31,62,93,186. It is clear that 1 and 2 cannot be written as the sum of powers
of a prime, so by trying out small primes, the only remaining possibilities are 186 = 6 - 31 =
(1+5)(1+2+4+8+16) and 18 = 3-62 = (14 2)(1 + 61). Thus our two numbers are
5-16 =80 and 2 - 61 = 122, sum the sum is 80 + 122 = 202.

5. Given k > 1, let pi denote the k-th smallest prime number. If N is the number of ordered
2023

4-tuples (a, b, c,d) of positive integers satisfying abed = [] px with a < b and ¢ < d, find N
k=1

(mod 1000).

Proposed by Sunay Joshi
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Answer: | 112

We claim that if n > 2 is square-free, then the number of ordered 4-tuples (a, b, ¢, d) satisfying

abed = n with a < b and ¢ < d is exactly $7(n)? — $7(n). To see this, note that a 4-tuple
(a,b,c,d) coresponds to a choice of divisor di = ab of n. By symmetry, there are T(gl) ways
to pick the pair (a,b) with @ < b. Similarly there are % ways to pick (¢,d) with ¢ < d.
Therefore the total number of 4-tuples is (3_, |, T(gl) %) -2 % . 7(2")

the terms corresponding to dq = 1,n. Since n is square-free, we have ged(dy,n/dy) = 1, hence

7(d1)7(n/dy) = 7(n) and the above reduces to 7(n)? — $7(n), as claimed.

, where we subtract

Returning to the problem, note that for n = Hiojf’ pr, we have 7(n) = 22023 hence N =
22:2023=2 _ 92023—1 _ 92022(22022 _ 1) This is clearly 0 (mod 8). By Euler’s Theorem, we see
that N = 222(222 — 1) = 482(482 — 1) = 112 (mod 125). By the Chinese Remainder Theorem,
N =112 (mod 1000), our answer.

6. Find the number of ordered pairs (z,y) of integers with 0 < z < 2023 and 0 < y < 2023 such
that v = 22 (mod 2023).

Proposed by Brandon Cho

Answer:

Since 2023 = 7 - 172, by the Chinese Remainder Theorem it suffices to consider the pair of
congruences y> = 2 (mod 7) and y* = 2? (mod 17?).

For the former, note that since 22 € {0,1,2,4} and y3 € {0,1, -1}, we must have y> = 22 =0
or y3 = 2% = 1. The former corresponds to (0,0). The latter is satisfied when x € {1, —1} and
y € {1,2,4}. This yields 6 pairs. Thus this case has 7 solutions.

For the latter congruence, we consider two cases. The first case is when 17 does not divide
y, so that 17 does not divide x. Further the map y — y? is a bijection of the set of units of
ZJ17?Z. Therefore each choice of unit = corresponds to a unique solution for y. Since there
are 172 — 17 units mod 172, we have a total of 172 — 17 pairs in this case. The second case
is when 17 divides y, hence 17 divides z. Any such pair (z,y) satisfies the congruence since
both sides are 0. It follows that there are 17 - 17 pairs in this third case. Summing, we find
2172 — 17 pairs.

Finally, we multiply the number of solutions to each of the two congruences to find an answer
of 7-(2-17% — 17) = 3927.

7. A positive integer £ > 2 is called sweet if there exists a positive integer n > 10 such that when
the leftmost nonzero decimal digit of n is deleted, the resulting number m satisfies n = m/. Let

S denote the set of all sweet numbers £. If the sum Y 7+ can be written as % for relatively
€es
prime positive integers A, B, find A + B.

Proposed by Sunay Joshi
Answer:

Let vp(t) denote the highest power of the prime p dividing ¢t. We claim that ¢ > 2 is sweet iff:
(i) all prime factors of £ — 1 are elements of {2,3,5,7}, (ii) v5(¢ — 1) < 2, (iii) vz (£ — 1) < 1,
(iv) 3 -7 does not divide £ — 1, and (v) £ —1 # 1,3,7,9. To see this, suppose that n = m/,
where m is the number obtained by deleting the leftmost digit of n. Write n = 10¥a + b,
where a € {1,...,9} is the leftmost digit of n, so that m = b. Then n = m/ is equivalent to
10*a + b = ¢b, or (£ — 1)b = 10*a for some k-digit number b.

The condition (¢ — 1)b = 10*a for an arbitrary positive integer b is equivalent to (£ — 1)[10%a
for some a € {1,...,9}, which is equivalent to the first four conditions above.
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If  —1 > 10, then (¢ — 1)b = 10¥a for some k-digit number b is equivalent to (¢ — 1)|10%a,
since the equality forces b to have at most k digits: b < 10¥-9/10 < 10*. If £ — 1 € {1,...,9},
then in the cases £ — 1 € {1,3,7,9}, b must have at least k digits. The value of b in each case

3-10F  7.10"
3 07

Thus ¢ € S iff the five conditions above hold. In terms of prime factorization, £ € S iff £ — 1 #
1,3,7,9 and ¢ — 1 = 2*5Y3*7* where z > 0, y > 0, and (z,w) € {(0,0),(0,1),(1,0), (2,0)}.
Splitting the desired sum into a product over primes, we find

S (SR e

les x>0 y>0

. k .10* .
is at least %, , and 2 1)0 , respectively.

where we subtract terms corresponding to the cases £ — 1 =1,3,7,9. By the geometric series

formula, this equals % — % = %. Thus our answer is 50 + 21 = 71.

. Given a positive integer ¢, define the sequence {agf)};’f:l such that alf) = [n+ ¢/n+ 1] for
all positive integers n. Let S denote the set of positive integers that appear in all three of the
sequences {ag)}g":l, {ag)}%":l, and {asf)}?f:l. Find the sum of the elements of S that lie in
the interval [1, 100].

Proposed by Sunay Joshi

Answer:

We claim that a number k + 1 is skipped by the sequence {a%)}ff:l iff k+1=m+[(m+3)"]
for some m > 0. To see this, suppose k + 1 is skipped by the sequence, so that a,, = k and
any1 > k + 2. The condition a, = k is equivalent to k < n + /n + % < k + 1 and thus
(m — %)k <n < (m+ %)é, where m = k — n. The condition a,11 > k + 2 is equivalent
tok+2 < (n+1)+ /n+1+ 3, which can be rewritten as (m + 1) — 1 < n. Combining
these two inequality chains, we find that n = [(m + )] — 1, hence the skipped number is
k+1=m+ [(m+ 3)"], as claimed.

It follows that the numbers skipped in the sequence for £ = 2 are m+ [m? +m+ 1] = (m+1)%;
the numbers skipped for £ = 3 are m+ [m® + 3m? + 3m+ 4] =m+m? + [3m? + 2m + 37;
and the numbers skipped for £ = 4 are m + [m* + 2m3 + %m2 + %m + 1—16] =m+m*+
2m3 + [3m? + im + 7. The skipped numbers for ¢ = 2 are 1,4,9,16,25, 36,49, 64,81, 100,
the skipped numbers for ¢ = 3 are 1,5,18,46,96, and the skipped numbers for ¢ = 4 are
1,7,42. The sum of (distinct) numbers that are skipped in at least one of the sequences can
be seen to be 599, hence the sum of the numbers in [1,100] that are not skipped in any list is
5050 — 599 = 4451, our answer.



