
Team Round Solutions

1. Consider a 2021-by-2021 board of unit squares. For some integer k, we say the board is tiled
by k-by-k squares if it is completely covered by (possibly overlapping) k-by-k squares with
their corners on the corners of the unit squares. What is the largest integer k such that the
minimum number of k-by-k squares needed to tile the 2021-by-2021 board is exactly equal to
100?

Proposed by: Ollie Thakar

Answer: 224

Consider the set S of unit squares in the (a, b) position on the 2021-by-2021 board where a
and b are both congruent to 1 modulo k. If 2021 = mk + r, with 0 < r ≤ k, then there are
(m+ 1)2 elements of S. Each k-by-k square in the tiling covers precisely one of these elements
of S, and it is easy to see that by establishing a regular pattern, we can tile the whole board
with (m+ 1)2 of the k-by-k squares.

Thus, we must find which k gives m = 9, the largest of which is k = 224.

2. Gary is baking cakes, one at a time. However, Gary’s not been having much success, and each
failed cake will cause him to slowly lose his patience, until eventually he gives up. Initially, a
failed cake has a probability of 0 of making him give up. Each cake has a 1

2 of turning out
well, with each cake independent of every other cake. If two consecutive cakes turn out well,
the probability resets to 0 immediately after the second cake. On the other hand, if the cake
fails, assuming that he doesn’t give up at this cake, his probability of breaking on the next
failed cake goes from p to p + 0.5. If the expected number of successful cakes Gary will bake
until he gives up is p

q , for relatively prime p, q, find p+ q.

Proposed by: Frank Lu

Answer: 86

Let f(p, c) be the function giving the expected number of cakes Gary will bake until he gives
up, given that his probability of giving up after the next failed cake is currently p, and his last
c cakes were successful.

Now, note that f(p, 0) = 1
2 + 1

2 (1− p)f(p+ 0.5, 0) + 1
2f(p, 1), and f(p, c) = 1

2 + 1
2 (1− p)f(p+

0.5, 0) + 1
2f(0, c + 1) for c ≥ 1. Note that this equation is not defined for c > 1 if p 6= 0, and

both equations are only defined for 0 ≤ p ≤ 0.9. For p = 1, we see that the first equation is
now f(1, 0) = 1

2 (1 + f(1, 1)), and the second equation is f(1, 1) = 1
2 (1 + f(0, 2)).

We also observe that f(0, c) is constant for c ≥ 2, since Gary’s probability of giving up at a
given time depends only on the last two cakes he attempted to bake, as well as his probability
of giving up right before baking his last cake (so Gary baking more than 2 successes in the
row doesn’t alter the expected number of cakes he bakes afterwards). Thus, we see that
f(0, c) = 1 + f(0.5, 0) for c ≥ 2, from the second equation.

Now, note that combining these two equations yields us that f(p, 0) = 3
4 + 3

4 (1 − p)f(p +
0.5, 0) + 1

4f(0, 2). But then we see that, solving the system yields us that f(0, 0) = 3
4 +

3
4f(0.5, 0)+ 1

4 (1+f(0.5, 0)), or that f(0, 0) = 1+f(0.5, 0), and similarly we see that f(0.5, 0) =
3
4+ 3

4
1
2f(1, 0)+ 1

4 (1+f(0.5, 0)), or that f(0.5, 0) = 4
3+ 1

2f(1, 0), and that f(1, 0) = 1+ 1
4f(0.5, 0).

The last two equations yield us in turn that f(0.5, 0) = 11
6 + 1

8f(0.5, 0), or that f(0.5, 0) = 44
21 ,

which in turn means that f(0, 0) = 65
21 , yielding an answer of 86.

3. Alice and Bob are playing a guessing game. Bob is thinking of a number n of the form 2a3b,
where a and b are positive integers between 1 and 2020, inclusive. Each turn, Alice guess a
number m, and Bob will tell her either gcd(m,n) or lcm(m,n) (letting her know that he is
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saying that gcd or lcm), as well as whether any of the respective powers match up in their
prime factorization. In particular, if m = n, Bob will let Alice know this, and the game is
over. Determine the smallest number k so that Alice is always able to find n within k guesses,
regardless of Bob’s number or choice of revealing either the lcm, or the gcd .

Proposed by: Frank Lu

Answer: 11

We can consider how a lies in the range {1, 2, . . . , 2020}, as does b. Let k(x, y) be the number
of guesses it takes, where a lies in {1, 2, . . . , x}, and b lies in {1, 2, . . . , y}. We first make the
observation that k(x, y) = k(y, x), by symmetry: Alice can just use the same strategy, but
flipping the exponents on x, y. From here, assume WLOG that x ≥ y.
First, we claim that k(x, 1) = blog2 xc + 1, which we will later refer to as the 1D case (a
diagram can illustrate why). To see this, note that every time Alice guesses a number, either
Bob will reveal what it is, or Alice will be told that the exponent on 2 is larger or smaller.
Effectively, then, the result will be like starting over from a completely different game with a
narrower range. Hence, we see that k(x, 1) is the minimum of max(k(y− 1, 1), k(x− y− 1, 1)),
for y between 1 and x, and letting k(0, 1) = 0. An inductive argument can be used here to
show this (like a binary search tree, effectively).

We now claim that k(x, y) = blog2 max(x, y)c+ 1, by inducting on the maximum of x, y, with
strong induction. Our base case for 1 is given.

Now, given that we’ve shown this where max(x, y) ≤ i − 1, consider k(x, y), where their
maximum is i ≥ 2 and WLOG say x = i. We know that k(x, y) ≥ blog2 xc+ 1 = k(x, 1), since
any strategy that Alice can use to guarantee in k(x, y) steps can be applied for the game with
only the first exponent varying. We will now show the other direction. To do this, have Alice
first guess 2b(i+1)/2c3b(y+1)/2c. First, if Alice guessed one of the exponents correctly, then note
that the set of possible values reduces down to the 1-D case (as though Alice and Bob were
playing with only one exponent varying), which Alice can guarantee in at most k(i, 1) guesses.

Otherwise, if Bob reports that the gcd or lcm of his number and Alice’s is 2b(i+1)/2c3b(y+1)/2c,
then note that the set of possible values is at most i/2 for the exponents for 2 and y/2 for
those of 3. Strong induction yields that, from here, at most blog2 i/2c+ 1 guesses are needed,
which means that in total at most blog2 ic+ 1 guesses are needed.

Finally, if Bob reports that the exponents are different, but gives a gcd or lcm that isn’t the
number itself, then we see that whichever exponents differ from Alice’s guess are the exponents
for Bob’s number. From here, Alice can play as though she was in the 1D case, with a range of
exponents that is again at most i/2. In all of these cases, we see that k(x, y) ≤ blog2 xc+ 1 =
k(x, 1), which in turn yields us the equality, as desired.

Finally, we see that our answer is just blog2 2020c+ 1 = 11.

4. Find the number of points P ∈ Z2 that satisfy the following two conditions:

1) If Q is a point on the circle of radius
√

2020 centered at the origin such that the line PQ is
tangent to the circle at Q, then PQ has integral length. 2) The x-coordinate of P is 38.

Proposed by: Ollie Thakar

Answer: 16

Notice that 382 +242 = 2020. Then, let P have coordinates (38, y), and label the length of PQ
as T. For now, we will only deal with positive y. We know from power of a point theorem that
(y + 24)(y − 24) = T 2. Re-arranging this expression gives us (y + T )(y − T ) = 242 = 26 · 32.
Now, we know that y+T and y−T must be integer factors of 26 ·32. There are (6+1)(2+1) = 21
factors of 26 · 32, of which 20 come in pairs and 1 is a perfect square. Thus, there are 11 pairs
of factors multiplying to 26 · 32.
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Of those pairs of factors, 3 pairs have 1 odd factor and 1 even factor, while the remaining pairs
have 2 even factors. (y+T )(y−T ) = 26 · 32 means that the only the pairs with 2 even factors
will lead to integer values of T and y. Each factor pair leads to a unique solution pair of y and
T. Thus, there are 8 possibilities for y, when y > 0. Then, there are 8 more possibilities for y
that are negative, so the total is 16.

Note: We also accepted the answer of 14 since it isn’t clear that P is allowed to be taken
on the circle and still yield a valid configuration.

5. Suppose two polygons may be glued together at an edge if and only if corresponding edges of
the same length are made to coincide. A 3×4 rectangle is cut into n pieces by making straight
line cuts. What is the minimum value of n so that it’s possible to cut the pieces in such a way
that they may be glued together two at a time into a polygon with perimeter at least 2021?

Proposed by: Austen Mazenko

Answer: 202

For n pieces, edges must be glued together at least n− 1 times, and each gluing event reduces
the overall perimeter by twice the length of the edges being glued together. Furthermore, every
time a cut is made to divide the bar into more pieces, it increases the total perimeter by at
most twice the length of the largest cut, which is 5 (the length of the rectangle’s diagonal).
To form n pieces, there are at most n − 1 cuts. Hence, an upper bound for the perimeter is
3 + 4 + 3 + 4 + 2 · 5 · (n− 1)− 2 · 0 · (n− 1) = 10n+ 4 since every edge being glued together has
a length > 0 and all cuts have length ≤ 5. Accordingly, we need 10n+ 4 ≥ 2021 =⇒ n ≥ 202
since n must be an integer. To see that n = 202 is sufficient, put the bar on the coordinate
plane so that it has one vertex on the origin and one at (4, 3). First, make 200 cuts from ( iN , 0)

to (4, 3− i
N ) for 1 ≤ i ≤ 200 and some large integer N .

Finally, cut the bottom right triangle like so:

1
N

1
N

Now, all of the thin strips have two edges of length 1
N , so they may be glued together in

sequence like so:
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By Pythagorean Theorem, each cut has length at least

√(
3− 201

N

)2
+
(
4− 201

N

)2− 1
N . Making

N arbitrarily large, each cut may have a length sufficiently close to 5 and each small edge may
have sufficiently small length so that the perimeter will exceed 2021, as desired.

6. We say that a string of digits from 0 to 9 is valid if the following conditions hold: First, for
2 ≤ k ≤ 4, no consecutive run of k digits sums to a multiple of 10. Second, between any two
0s, there are at least 3 other digits. Find the last four digits of the number of valid strings of
length 2020.

Proposed by: Frank Lu

Answer: 9040

Let al be the number of valid strings of length l whose last digit is 0, and define bl to be those
whose second to last digit is 0, cl third to last digit is 0, and dl to be all other valid strings.
Let tl = al + bl + cl + dl.

Then, observe that we can construct the following recurrences:

First, al = dl−1, as for any valid string where there is no 0 in the last three digits, we can
append a 0 to get a valid string. This holds for l ≥ 2.

Next, bl = 7al−1. To see this, suppose we have a valid string ending with a 0 of length
l−1, whose last three digits are x, y, 0. Then, we can add any digit except for 0, and the digits
equivalent to −y and −x−y (mod 10), all of which are distinct. By a similar logic, cl = 7bl−1.
Note, however, that these equations only hold for l ≥ 4.

Finally, we note that dl = 7cl−1 + 6dl−1, by applying a similar logic. Summing all of these
up, we see that tl = 7tl−1. We do, however, need to compute t3 first, as we’ve seen that this
recurrence only holds for l ≥ 4. We compute: a1 = 1, d1 = 9, b1 = c1 = 0. For l = 2 : a2 =
9, b2 = 9, c2 = 0, d2 = 72, and for l = 3 : a3 = 72, b3 = 72, c3 = 72, d3 = 504. This yields that
t1 = 10, t2 = 90, t3 = 720, which gives us that for l ≥ 4, tl = 720 · 7l−3, which gives us that
t2020 = 720 · 72017.
Now, to compute the last four digits: we see that this is equivalent to 0 (mod 16), so we need
to find what it is (mod 625). Note that 7500 ≡ 1 (mod 625), by Euler totient, which gives us
that t2020 ≡ 95 · 717 (mod 625). But as this is divisible by 5, we can just find what 19 · 717
(mod 125) is. However, we see that 74 = 2401 ≡ 25 + 1 (mod 125), so hence 716 ≡ (25 + 1)4 ≡
1+25 ·4 ≡ 101 (mod 125). But then we have that 19 ·717 ≡ 133 ·101 ≡ 58 (mod 125), implying
that t2020 ≡ 290 (mod 625). Noting that we have that t2020 is divisible by 16 yields us that
t2020’s last four digits are 9040.

7. Let X, Y , and Z be concentric circles with radii 1, 13, and 22, respectively. Draw points A,
B, and C on X, Y , and Z, respectively, such that the area of triangle ABC is as large as
possible. If the area of the triangle is ∆, find ∆2.

Proposed by: Daniel Carter

Answer: 24300

Let the circles be centered at the origin O and without loss of generality A = (1, 0). Consider
fixing A and B and letting C vary. The area of the triangle is maximized when the height
from C onto AB is perpendicular to the tangent of Z at C, or in other words when CO is
perpendicular to AB. Likewise we have AO is perpendicular to BC, so B and C have the
same x-coordinate. Let B = (x, b) and C = (x, c) with x and b negative and c positive.

Then the circle equations give x2 + b2 = 169 and x2 + c2 = 484, and CO ⊥ AB gives
x(x − 1) + bc = 0. Solve the first two equations for b and c and plug into the third to give
x(x− 1) +

√
(169− x2)(484− x2) = 0. Rearranging, squaring, and simplifying gives the cubic

x3 − 327x2 + 40898 = 0. We know x is negative, so we can look for a root of the form −n
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where n is a factor of 40898 = 2 · 112 · 132. We don’t need to try many to find the solution
x = −11. Then b = −4

√
3, c = 11

√
3, and the area of the triangle is 90

√
3 =
√

24300.

8. Let there be a tiger, William, at the origin. William leaps 1 unit in a random direction, then
leaps 2 units in a random direction, and so forth until he leaps 15 units in a random direction
to celebrate PUMaC’s 15th year.

There exists a circle centered at the origin such that the probability that William is contained
in the circle (assume William is a point) is exactly 1

2 after the 15 leaps. The area of that circle
can be written as Aπ. What is A?

Proposed by: Aditya Gollapudi

Answer: 1240

Let D = {θ1, θ2, ..., θ15} represent the random directions that William has selected. Then the

point that William is at can be represented by (
∑15
i=1 i cos(θi),

∑15
i=1 i sin(θi)). Thus the area

of the smallest circle containing is π((
∑15
i=1 i cos(θi))

2 + (
∑15
i=1 i sin(θi))

2) and we need only

solve for (
∑15
i=1 i cos(θi))

2 + (
∑15
i=1 i sin(θi))

2 Expanding this out we get
∑15
i=1 i

2 cos(θi)
2 +∑15

i=1 i
2 sin(θi)

2 +
∑15
i=1

∑15
j=1,j 6=i ij cos(θi + θj) +

∑15
i=1

∑15
j=1,j 6=i ij sin(θi + θj) which can be

simplified to
∑15
i=1 i

2 +
∑15
j=1,j 6=i cos(θi + θj) By the symmetry of the distribution and the

symmetry of cos, the second term is less than zero 1
2 of the time and greater than zero 1

2 half
of the time. Thus the area of the circle in which William is contained 1

2 of the time is simply

π
∑15
i=1 i

2 which is well known to be π 15∗16∗31
6 = 1240π

9. Consider a regular 2020-gon circumscribed into a circle of radius 1. Given three vertices of this
polygon such that they form an isosceles triangle, let X be the expected area of the isosceles
triangle they create. X can be written as 1

m tan((2π)/n) where m and n are integers. Compute
m+ n.

Proposed by: Ollie Thakar

Answer: 5049

Draw radii from the center of the circumcircle to each vertex of the isosceles triangle. If the
central angles thus created are α, α, 2π − 2α then the area is simply sinα − 1

2 sin(2α). This
can be seen with law of sines. Let the original side lengths of the triangle be A,B,C, and
angles be a, b, c. Then, because the center divides the triangle into three sub-triangles, the
subtriangles have areas 1

2RC cos c, 1
2RB cos b, and 1

2RA cos a, which I found by dividing them
into two congruent right triangles and using base times height. Law of sines tells us, however,
that A = 2R sin a,B = 2R sin b, C = 2R sin c. Plugging these relations into our area formula,
remembering also that R = 1 and cos a sin a = 1

2 sin(2a) tells us that the total area of the
triangle is Area = 1

2 (sin(2a) + sin(2b) + sin(2c)), which is the formula that I used to get
sinα− 1

2 sin(2α).

For each vertex, the combined area of all of the isosceles triangles whose distinct angle lies at
that vertex is simply the sum of sinα− 1

2 sin(2α) where α ∈ { 2π
2020 ,

4π
2020 , ...,

2018π
2020 }.

The sum of sinα for α in the above range is just the height of the regular 2020-gon with
side-length 1, which is h = 1

tan(π/2020) .

The sum of sin(2α) for α in the above range is the imaginary part of the sum 1 + z+ ...+ z1009

where z is the 1010th root of unity, so is clearly 0.

The total number of isosceles triangles is 1009 ∗ 2020, and the sum of all of their areas, by our
above logic, is 2020∗ 1

2 tan(π/2020) , so the expected area of one of the triangles is 1
1009 tan(π/2020) .
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10. Let N be the number of sequences of positive integers greater than 1 where the product of all
of the terms of the sequence is 1264. If N can be expressed as a(2b), where a is an odd positive
integer, determine b.

Proposed by: Frank Lu

Answer: 128

Let g(n) be the number of ordered tuples of any size so that the entries multiply to n, and
all are positive integers that are at least 2. Let f(n) be the sum over all such ordered tuples
of the sum of the entries in the tuples. For sake of convenience, we set g(1) = 1, representing
how we have the empty product of a tuple of length 0, and similarly we have that f(1) = 0,
representing the empty sum.

Then, we see that, summing over possible first entries, yields us that g(n) =
∑

d|n,d6=n
g(d). We’ll

write this as 2g(n) =
∑
d|n

g(d) We also know that g(p) = 1 for any prime p, as we have that the

only ordered tuple is (p).

By a similar logic, we can see that g(pk) = 2k−1, by using an inductive argument.

Now, observe that, given n = paqb, where p, q are distinct primes and a, b ≥ 1, that we have
that 2g(n) = g(n) +

∑
d|n

g(d) = g(n) +
∑
d|n/p

g(d) +
∑
d|n/q

g(d)−
∑

d|n/pq
g(d) = 2g(n/p) + 2g(n/q)−

2g(n/pq). We thus see that g(n) = 2g(n/p) + 2g(n/q)− 2g(n/pq), unless n = pq, where in this
case we have that g(pq) = 3.

Now, let fb(a) = g(paqb)
2a−1 . Note then that our recurrence relation becomes 2afb+1(a + 1) =

2afb+1(a) + 2a+1fb(a+ 1)− 2afb(a), or that fb+1(a+ 1)− fb+1(a) = 2fb(a+ 1)− fb(a), unless
we have both a, b equaling zero, where then we have that f1(1) = 3.

This yields us, for a, b where at least one of a, b is greater than 1, that fb(a) − fb(0) =∑a−1
i=0 2fb−1(i+ 1)− fb−1(i). But fb(0) = g(qb), which for b > 1 is equal to 2b−1, so in fact this

becomes fb(a) − fb(0) = fb−1(a) − fb−1(0) +
∑a
i=1 fb−1(i). But we can then rewrite this as

fb(a) = fb−1(a) +
∑a
i=0 2fb−1(i), for all positive integers a and for b > 1, and for b = 1, a > 1.

We can thus see that, with f0(a) = 1 for a 6= 0 that f1(a) = a + 2. Note that fb will be a
degree b polynomial.

Now, suppose we can write fb(a) =
∑b
i=0 ci

(
a+i
i

)
, for some coefficients i. It thus follows that

fb+1(a) =
∑b
i=0 ci

(
a+i
i

)
+
∑a
j=0

∑b
i=0 ci

(
j+i
i

)
=
∑b
i=0 ci

(
a+i
i

)
+
∑b
i=0 ci

(
a+i+1
i+1

)
= c0

(
a
0

)
+

cb
(
a+b+1
b+1

)
+
∑b
i=1(ci + ci−1)

(
a+i
i

)
.

But starting with the fact that the coefficients begin as 1, 1, with a+2 = a+1+1, it thus follows
that we have that fb(a) =

∑b
i=0

(
b
i

)(
a+i
i

)
, giving us in turn that g(paqb) = 2a−1(

∑b
i=0

(
b
i

)(
a+i
i

)
).

Applying this to our situation, we want to evaluate f(2128364). We can express this then as

2127(
∑64
i=0

(
64
i

)(
128+i
i

)
). Note that in this sum inner sum, we have two terms whose largest

power of 2 dividing them is 1, namely i = 0, i = 64, and one term whose largest power of 2
dividing them is 2, namely

(
64
32

)(
128+32

32

)
. Their sum is

(
196
64

)
+ 1. But note that this is divisible

by 4, yielding us the answer 128. To see this, consider the product (192 ∗ 191 ∗ 190 ∗ . . . ∗
129)/(64∗63∗ . . .∗1). Observe then that we can pair elements together in the denominator by
i and 64− i, and pairing i and 320− i, save for the elements 192, 64, 160, 32. Only one of these
is equivalent to 3 (mod 4) when the largest power of 2 is divided out. This is then equivalent
to 3 (mod 4), showing that

(
196
64

)
+ 1 is at least divisible by 4.

11. Three (not necessarily distinct) points in the plane which have integer coordinates between
1 and 2020, inclusive, are chosen uniformly at random. The probability that the area of the
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triangle with these three vertices is an integer is a
b in lowest terms. If the three points are

collinear, the area of the degenerate triangle is 0. Find a+ b.

Proposed by: Daniel Carter

Answer: 13

Let the three points be (xi, yi) for i ∈ {1, 2, 3}. By the shoelace area formula, the area of the
triangle is |x1y2 + x2y3 + x3y1 − x2y1 − x3y2 − x1y3|/2, so it is an integer if the numerator is
even. Considering the numerator mod 2, shifting any of the xi or yi by 2 at a time preserves
the parity of the numerator. Add or subtract an even number from each of x2, y2, x3, and y3
to make x′2, y′2, etc. so that x′2 and x′3 are either x1 or x1 + 1 and y′2 and y′3 are either y1 or
y1 + 1. If the resulting triangle has integer area, so did the original.

Note that there are an equal number of even numbers as odd numbers between 1 and 2020
inclusive. Thus the probability that x′2 = x1 is 1/2, and likewise for the other coordinates
and possibilities. Out of the sixteen possibilities for x′2, y′2, x′3, and y′3, six of them form a
right triangle with area 1/2, and ten of them form a degenerate triangle with area 0. Thus the
probability the original triangle had integer area is 10/16 = 5/8, so the answer is 5 + 8 = 13.

12. Given a sequence a0, a1, a2, . . . , an, let its arithmetic approximant be the arithmetic sequence

b0, b1, . . . , bn that minimizes the quantity
n∑
i=0

(bi−ai)2, and denote this quantity the sequence’s

anti-arithmeticity. Denote the number of integer sequences whose arithmetic approximant is
the sequence 4, 8, 12, 16 and whose anti-arithmeticity is at most 20.

Proposed by: Frank Lu

Answer: 15

First, we find a formula for the anti-arithmeticity for a sequence a0, a1, a2, a3, as well to find
what the arithmetic sequence should be. Suppose we have arithmetic sequence a − 3d, a −

d, a + d, a + 3d. Then, we see that the value of
3∑
i=0

(a + (2i − 3)d − ai)2 can be evaluated to

equal 4a2 + 20d2 − 2(a0 + a1 + a2 + a3)a−
(6a3+2a2−2a1−6a0)d+a20+a21+a22+a23. We can re-write this as equal to 4(a− a0+a1+a2+a3

4 )2+

a20 + a21 + a22 + a23 −4(a0+a1+a2+a34 )2 − 20(d − 3a3+a2−a1−3a0
20 )2 − 20( 3a3+a2−a1−3a0

20 )2. We
see then that the minimal value of this is equal to a20 + a21 + a22 + a23 − 4(a0+a1+a2+a34 )2 −
20( 3a3+a2−a1−3a0

20 )2.

There are two ways to continue. Either through algebraic manipulation or via linear algebra
arguments with orthogonal vectors (1,−1,−1, 1) and (1,−3, 3,−1), we see that this is equal
to (a3 − a2 − a1 + a0)2/4 + (a3 − 3a2 + 3a1 − a0)2/20.

Now, note that we are given that a0 + a1 + a2 + a3 = 40, 3a3 + a2 − a1 − 3a0 = 40. But we
see that that the anti-arithmeticity needs to be an integer. But let a3 − 3a2 + 3a1 − a0 = s,
and let a3 − a2 − a1 + a0 = t. We can then see that a0 + a3 = 20 + t/2, a3 − a0 = 12 + s/10,
and similarly we see that a1 + a2 = 20 − t/2, a2 − a1 = 4 − 3s/10, which requires us to have
s divisible by 10, and t divisible by 2, and s/10, t/2 to have the same parity. We make the
substitution s/10 = a, t/2 = b to get that our anti-arithmeticity value is just a2 + 5b2, with
a, b having the same parity.

For the values to be at most 20, we can just enumerate: (0, 0), (0,±2), (±1,±1), (±2, 0), (±3,±1), (±4, 0).
The total number of pairs: 1 + 2 + 4 + 2 + 4 + 2 = 15.

13. Will and Lucas are playing a game. Will claims that he has a polynomial f with integer
coefficients in mind, but Lucas doesn’t believe him. To see if Will is lying, Lucas asks him
on minute i for the value of f(i), starting from minute 1. If Will is telling the truth, he will
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report f(i). Otherwise, he will randomly and uniformly pick a positive integer from the range
[1, (i+1)!]. Now, Lucas is able to tell whether or not the values that Will has given are possible
immediately, and will call out Will if this occurs. If Will is lying, say the probability that Will
makes it to round 20 is a

b . If the prime factorization of b is pe11 . . . pekk , determine the sum∑k
i=1 ei.

Proposed by: Frank Lu

Answer: 289

Suppose Will has given the values a1, a2, . . . , an. Given that Will has lasted up to turn n, there
is a polynomial so that p so that p(i) = ai for each i. Furthermore, if q is also a polynomial
where this is possible, then we have that p(i) − q(i) is divisible by (i − 1)(i − 2) . . . (i − n).
But by integer coefficients, we have that p(i) = z(i − 1)(i − 2) . . . (i − n) + q(i). Thus, it
follows that Will has one unique possible value of an+1 modulo n! that works, which means
he has a 1

n! chance of making it to the next round. Furthermore, the probability that he
makes it past minute 2 is 1 (any line will work). Thus, the probability that he makes it to

round n is equal to p =
∏n−1
i=1

1
i! , given that he is lying. Now, we need to determine the prime

valuations for each of the primes between 1 and 20. For a given prime p, this is equal to∑19
i=1

∑∞
k=1b

i
pk
c =

∑∞
k=1

∑19
i=1b

i
pk
c. For p = 11, 13, 17, 19, this expression is just equal to

20−p. For p = 7, this equals 7∗1+6∗2 = 19, and for p = 5 this is 5∗1+5∗2+5∗3 = 30. For
p = 3, the sum evaluates to (3∗ (1 + . . .+ 5) + 2∗6) + (9∗1 + 2∗2) = 45 + 25 = 70. Finally, for
p = 2, this is 2∗(1+ . . .+9)+4∗(1+ . . .+3+4)+8∗1 +2∗4+4∗1 = 90+40+8+8+4 = 150.
The total sum is thus 1 + 3 + 7 + 9 + 19 + 30 + 70 + 150 = 20 + 49 + 220 = 289.

14. Let N be the number of convex 27-gons up to rotation there are such that each side has length
1 and each angle is a multiple of 2π/81. Find the remainder when N is divided by 23.

Proposed by: Michael Gintz and Rahul Saha

Answer: 12

Let us consider the roots of unity. Every such polygon can be constructed by taking some
subset of the roots of unity which adds to 0, and each such subset uniquely defines a polygon.
Two define the same polynomial if they are rotations of each other. We wish to show that
the subsets are only those made by unioning equilateral triangles. Consider some subset that
works. Letting ω be the smallest primitive root we have some polynomial in ω which has a
root at ω. Then since the cyclotomic polynomial is the minimal polynomial of ω, this new
polynomial must be a multiple of that. However, the cyclotomic polynomial of powers of
primes is known to be 1 + x27 + x54, so our set of roots must contain equilateral triangles.
Thus we can consider whether we have the first 27 roots. Two polygons will be equivalent iff
these binary strings of length 27 are equivalent by rotation. Since this is a 27 gon there are
9 ones so by https://math.stackexchange.com/questions/721783/number-of-unique-sequences-
with-circular-shifts our answer is

1

27

∑
d|9

φ(d)

(
a/d+ b/d

a/d

)
1

27

(
1

(
27

9

)
+ 2

(
9

3

)
+ 6

(
3

1

))
≡ 12 (mod 23).

Note: Since the desired polygons in this problem are impossible, due to the condition on the
angles, we also accepted the answer of 0 .

15 Suppose that f is a function f : R≥0 → R so that for all x, y ∈ R≥0 (nonnegative reals) we
have that f(x)+f(y) = f(x+y+xy)+f(x)f(y). Given that f( 3

5 ) = 1
2 and f(1) = 3, determine

blog2(−f(102021 − 1))c.
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Proposed by: Frank Lu

Answer: 10104

First, we simplify down our functional equation for f. Notice that, using Simon’s Favorite
Factoring trick, we may write this as (1−f(x))(1−f(y)) = 1−f(x+y+xy).We can then simplify
down our function by writing g(x) = 1− f(x), yielding the function g(x)g(y) = g(x+ y+ xy).
Now, notice that, letting h(x) = g(x − 1), this is equivalent to writing h(x + 1)h(y + 1) =
h(x+ y + xy + 1). But then, notice that this is equivalent to writing h(x)h(y) = h(xy) for all
x, y that are real and at least 1, the domain of h. From here, notice that the values of h that
we have are h( 8

5 ) = g( 3
5 ) = 1 − f( 3

5 ) = 1
2 , and similarly that h(2) = g(1) = 1 − f(1) = −2.

Now, notice then that h(5) = h(8)/h( 8
5 ) = −8/ 1

2 = −16. Therefore, we see that h(102021),
by the multiplicativity, equals h(10)2021 = (−32)2021 = 210105. Therefore, it follows that
f(102021 − 1) = 1− g(102021 − 1) = 1− h(102021) = −210105 + 1, yielding our answer of 10104.
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