Algebra A

1. Compute the sum of all real numbers x which satisfy the following equation

$$
\frac{8^{x}-19 \cdot 4^{x}}{16-25 \cdot 2^{x}}=2
$$

2. For a bijective function $g: \mathbb{R} \rightarrow \mathbb{R}$, we say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is its superinverse if it satisfies the following identity $(f \circ g)(x)=g^{-1}(x)$, where g^{-1} is the inverse of g. Given $g(x)=x^{3}+9 x^{2}+27 x+81$ and f is its superinverse, find $|f(-289)|$.
3. Let $f(x)=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}$ and let $\zeta=e^{2 \pi i / 5}=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}$. Find the value of the following expression:

$$
f(\zeta) f\left(\zeta^{2}\right) f\left(\zeta^{3}\right) f\left(\zeta^{4}\right)
$$

4. The roots of a monic cubic polynomial p are positive real numbers forming a geometric sequence. Suppose that the sum of the roots is equal to 10 . Under these conditions, the largest possible value of $|p(-1)|$ can be written as $\frac{m}{n}$, where m, n are relatively prime integers. Find $m+n$.
5. Consider the sum

$$
S=\sum_{j=1}^{2021}\left|\sin \frac{2 \pi j}{2021}\right|
$$

The value of S can be written as $\tan \left(\frac{c \pi}{d}\right)$ for some relatively prime positive integers c, d, satisfying $2 c<d$. Find the value of $c+d$.
6. Let f be a polynomial. We say that a complex number p is a double attractor if there exists a polynomial $h(x)$ so that $f(x)-f(p)=h(x)(x-p)^{2}$ for all $x \in \mathbb{R}$. Now, consider the polynomial

$$
f(x)=12 x^{5}-15 x^{4}-40 x^{3}+540 x^{2}-2160 x+1
$$

and suppose that it's double attractors are $a_{1}, a_{2}, \ldots, a_{n}$. If the sum $\sum_{i=1}^{n}\left|a_{i}\right|$ can be written as $\sqrt{a}+\sqrt{b}$, where a, b are positive integers, find $a+b$.
7. Consider the following expression

$$
S=\log _{2}\left(\left|\sum_{k=1}^{2019} \sum_{j=2}^{2020} \log _{2^{1 / k}}(j) \log _{j^{2}}\left(\sin \frac{\pi k}{2020}\right)\right|\right)
$$

Find the smallest integer n which is bigger than S (i.e. find $\lceil S\rceil$).
8. Consider the sequence of Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$, given by $F_{0}=F_{1}=1$ and $F_{n+1}=$ $F_{n}+F_{n-1}$ for $n \geq 1$. Define the sequence $x_{0}, x_{1}, x_{2}, \ldots$ by $x_{0}=1$ and $x_{k+1}=x_{k}^{2}+F_{2^{k}}^{2}$ for $k \geq 0$. Define the sequence $y_{0}, y_{1}, y_{2}, \ldots$ by $y_{0}=1$ and $y_{k+1}=2 x_{k} y_{k}-y_{k}^{2}$ for $k \geq 0$. If

$$
\sum_{k=0}^{\infty} \frac{1}{y_{k}}=\frac{a-\sqrt{b}}{c}
$$

for positive integers a, b, c with $\operatorname{gcd}(a, c)=1$, find $a+b+c$.

