Individual Finals B

1. Let a, b, c be real numbers in the interval $[0,1]$, satisfying $a b+c \leq 1$. Find the maximal value of their sum $a+b+c$.
2. Let p be an odd prime. Prove that for every integer k, there exist integers a, b such that $p \mid a^{2}+b^{2}-k$.
3. Let $\triangle A B C$ be a triangle, and let C_{0}, B_{0} be the feet of perpendiculars from C and B onto $A B$ and $A C$ respectively. Let Γ be the circumcircle of $\triangle A B C$. Let E be a point on the Γ such that $A E \perp B C$. Let M be the midpoint of $B C$ and let G be the second intersection of $E M$ and Γ. Let T be a point on Γ such that $T G$ is parallel to $B C$. Prove that T, A, B_{0}, C_{0} are concyclic.
