PUM.C

Number Theory A

- 1. Compute the last two digits of $9^{2020} + 9^{2020^2} + \ldots + 9^{2020^{2020}}$.
- 2. How many ordered triples of nonzero integers (a, b, c) satisfy 2abc = a + b + c + 4?
- 3. Find the sum (in base 10) of the three greatest numbers less than 1000_{10} that are palindromes in both base 10 and base 5.
- 4. Given two positive integers $a \neq b$, let f(a, b) be the smallest integer that divides exactly one of a, b, but not both. Determine the number of pairs of positive integers (x, y), where $x \neq y$, $1 \leq x, y, \leq 100$ and gcd(f(x, y), gcd(x, y)) = 2.
- 5. We say that a positive integer n is *divable* if there exist positive integers 1 < a < b < n such that, if the base-a representation of n is $\sum_{i=0}^{k_1} a_i a^i$, and the base-b representation of n is $\sum_{i=0}^{k_2} b_i b^i$, then for all positive integers c > b, we have that $\sum_{i=0}^{k_2} b_i c^i$ divides $\sum_{i=0}^{k_1} a_i c^i$. Find the number of non-divable n such that $1 \le n \le 100$.
- 6. Find the number of ordered pairs of integers (x, y) such that 2167 divides $3x^2 + 27y^2 + 2021$ with $0 \le x, y \le 2166$.
- 7. Let $\phi(x, v)$ be the smallest positive integer n so that 2^v divides $x^n + 95$ if it exists, or 0 if no such positive integer exists. Determine $\sum_{i=0}^{255} \phi(i, 8)$.
- 8. What is the smallest integer a_0 such that, for every positive integer n, there exists a sequence of positive integers $a_0, a_1, ..., a_{n-1}, a_n$ such that the first n-1 are all distinct, $a_0 = a_n$, and for $0 \le i \le n-1$, $a_i^{a_{i+1}}$ ends in the digits $\overline{0a_i}$ when expressed without leading zeros in base 10?