P U M ㄷC

Number Theory A

1. Compute the last two digits of $9^{2020}+9^{2020^{2}}+\ldots+9^{2020^{2020}}$.
2. How many ordered triples of nonzero integers (a, b, c) satisfy $2 a b c=a+b+c+4$?
3. Find the sum (in base 10) of the three greatest numbers less than 1000_{10} that are palindromes in both base 10 and base 5 .
4. Given two positive integers $a \neq b$, let $f(a, b)$ be the smallest integer that divides exactly one of a, b, but not both. Determine the number of pairs of positive integers (x, y), where $x \neq y$, $1 \leq x, y, \leq 100$ and $\operatorname{gcd}(f(x, y), \operatorname{gcd}(x, y))=2$.
5. We say that a positive integer n is divable if there exist positive integers $1<a<b<n$ such that, if the base- a representation of n is $\sum_{i=0}^{k_{1}} a_{i} a^{i}$, and the base- b representation of n is $\sum_{i=0}^{k_{2}} b_{i} b^{i}$, then for all positive integers $c>b$, we have that $\sum_{i=0}^{k_{2}} b_{i} c^{i}$ divides $\sum_{i=0}^{k_{1}} a_{i} c^{i}$. Find the number of non-divable n such that $1 \leq n \leq 100$.
6. Find the number of ordered pairs of integers (x, y) such that 2167 divides $3 x^{2}+27 y^{2}+2021$ with $0 \leq x, y \leq 2166$.
7. Let $\phi(x, v)$ be the smallest positive integer n so that 2^{v} divides $x^{n}+95$ if it exists, or 0 if no such positive integer exists. Determine $\sum_{i=0}^{255} \phi(i, 8)$.
8. What is the smallest integer a_{0} such that, for every positive integer n, there exists a sequence of positive integers $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}$ such that the first $n-1$ are all distinct, $a_{0}=a_{n}$, and for $0 \leq i \leq n-1, a_{i}^{a_{i+1}}$ ends in the digits $\overline{0 a_{i}}$ when expressed without leading zeros in base 10 ?
