
Number Theory A Solutions

1. Compute the last two digits of 92020 + 92020
2

+ . . .+ 92020
2020

.

Proposed by: Nancy Xu

Answer: 20

It is enough to compute the residue of 92020 + 92020
2

+ . . .+ 92020
2020

modulo 100. We have:

92020 ≡ (10− 1)2020 (mod 100)

≡
2020∑
n=0

(
2020

n

)
(10)n(−1)2020−n (mod 100)

≡
(

2020

1

)
(10)(−1)2019 + (−1)2020 (mod 100)

≡ −20200 + 1 (mod 100)

≡ 1 (mod 100).

Then 92020
k ≡ 1k (mod 100) ≡ 1 (mod 100) for all k, so 92020 + 92020

2

+ . . . + 92020
2020 ≡

2020 ≡ 20 (mod 100).

2. How many ordered triples of nonzero integers (a, b, c) satisfy 2abc = a+ b+ c+ 4?

Proposed by: Austen Mazenko

Answer: 6

Since 2ab − 1 6= 0 for integers a, b, we need c = a+b+4
2ab−1 to be an integer. If |a|, |b| ≥ 2 then

|2ab − 1| > |a + b + 4| unless a = b = 2, so c = 8
7 . Thus, one of a, b is in {−1, 1}. If a = 1,

then (2b − 1)|(b + 5) and b = 1, 6, giving (1, 1, 6) and cyclic permutations. If a = −1, then
(2b+ 1)|(b+ 3), so b = −1 or b = 2. In either case, we get (−1,−1, 2) and cyclic permutations.
This exhausts all possible cases, so our answer is 6.

3. Find the sum (in base 10) of the three greatest numbers less than 100010 that are palindromes
in both base 10 and base 5.

Proposed by: Henry Erdman

Answer: 1584

Noting that 2× 54 > 1000, first we consider palindromes of the form 1XXX15. Such numbers
are greater than 54 = 625. Note, however, that the final digit (in base 10) must be congruent
to 1 modulo 5, so the greatest palindrome in both bases is of the form 6X610. Thus we have ten
options, and by trial and error, we find 67610 = 102015 and 62610 = 100015. These are the two
largest numbers that satisfy our conditions, so we only have to find the next-largest. Note that
any number greater than 40005 is also greater than 50010 and thus cannot be a palindrome in
base 10 as well, since we have no number 50010 < x < 62510 such that the first and last digit
match and are congruent to 4 modulo 5. Similarly, for x > 30005, we need 37510 < x < 50010
and the first and last digits of x to be congruent to 3 modulo 5. The only such palindromes
are 38310 and 39310, neither of which are palindromes in base 5. Moving down to the range
20005 = 25010 < x < 37510, 29210 = 21325 is not a palindrome in base 5, but 28210 = 21125
is, thus we have found our third number. Summing in base 10, 676 + 626 + 282 = 1584.

4. Given two positive integers a 6= b, let f(a, b) be the smallest integer that divides exactly one
of a, b, but not both. Determine the number of pairs of positive integers (x, y), where x 6= y,
1 ≤ x, y,≤ 100 and gcd(f(x, y), gcd(x, y)) = 2.
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Proposed by: Frank Lu

Answer: 706

First, note that f(x, y) is a power of a prime; for any n that divides x but not y, if it has
at least two distinct prime factors, then we can write n as pe11 n

′, where p1 doesn’t divide n′.
Then, if pe11 divides y, then n′ can’t divide into y, and n′ < n. Thus, we see that f(x, y) = 2e

for some exponent e ≥ 1. Furthermore, we see that 2|x, 2|y by gcd. WLOG, suppose that
f(x, y) divides x, but not y. Then, note that the largest power of 2 in y is e − 1; otherwise,
either it is divisible by 2e or that 2e−1 is not a divisor of y. Furthermore, the largest power of
2 dividing x is larger than that of y, giving that e ≥ 2. Hence, y = 2y′, y′ odd, and x = 4x′,
x′ a positive integer. Note also that either both must be divisible by 3, or neither are, else
f(x, y) ≤ 3. We will proceed with casework.

• Case 1: x is not divisible by 3. Then, note that y′ only has prime factors that are at least
5. We also know that 1 ≤ y′ ≤ 50, yielding 50− 50

2 −b
50
3 c+ b 506 c = 50− 25− 16 + 8 = 17

possibilities for y′. For x′, we have 25− b 253 c = 25− 8 = 17 cases here, giving us a total
of 289.

• Case 2: x is divisible by 3. Then, y = 6y′, x = 12x′, and all we need is that y′ is odd.
This yields us that we have b 10012 c = 8 choices for x′ and, as we need 1 ≤ y′ ≤ 16, 8 choices
for y′. This has 64 cases.

Thus, our answer is 2 ∗ (289 + 64) = 2 ∗ 353 = 706.

5. We say that a positive integer n is divable if there exist positive integers 1 < a < b < n
such that, if the base-a representation of n is

∑k1

i=0 aia
i, and the base-b representation of n is∑k2

i=0 bib
i, then for all positive integers c > b, we have that

∑k2

i=0 bic
i divides

∑k1

i=0 aic
i. Find

the number of non-divable n such that 1 ≤ n ≤ 100.

Proposed by: Frank Lu

Answer: 27

First, note that if n can be written as pq, where 1 < p < q are positive integers, then note that
the base n−1 representation of n is 1(n−1)+1, and the base q−1 representation p(q−1)+p,
and for c > n− 1 we have that ((c− 1) + 1)|(p(c− 1) + c). Thus, we only need to consider the
positive integers that aren’t primes or square of primes.

Also, for p > 2, we see that base p − 1 yields that p2 gives (p − 1)2 + 2(p − 1) + 1, and base
p2 − 1 yields p2 − 1 + 1, so thus for c ≥ p2 − 1 we have that (c+ 1)|(c2 + 2c+ 1).

Now, given integer n and base-a, suppose that the base-a representation of n is
∑k

i=0 aia
i, let

pa,n(x) be the polynomial
∑k

i=0 aix
i. Then, note that if we write pa,n(x) as pb,n(x)q(x)+r(x),

where r(x) has degree less than pb,n(x). But then note that for sufficiently large x, pb,n(x) >
r(x).

But then, we see that if r(x) 6= 0, then we see that for each integer x > n that pb,n(x)|r(x)
implies that r(x) = 0 for all x sufficiently large. But then r is the zero polynomial, giving that
pb,n(x)|pa,n(x).

If pb,n(x) and pa,n(x) are the same degree, we see that the latter is a scalar multiple of the
former, by say, c. But then we see that c < p and we need c|p, contradiction.

Otherwise, note then that if the degree of pa,n(x) is d, note then 1 < pb,n(a) < ad ≤ pa,n(a) = n,
which means that n isn’t prime, contradiction.

Thus, we see that the only non-divable numbers are primes, 4, and 1. For 4, we see the base
representations 1002 and 113, which is not possible.
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We thus list out the numbers: 1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67
, 71, 73, 79, 83, 89, 97, yielding our answer of 27.

6. Find the number of ordered pairs of integers (x, y) such that 2167 divides 3x2 + 27y2 + 2021
with 0 ≤ x, y ≤ 2166. Proposed by: Aleksa Milojevic

Answer: 2352

First, we observe that 2167 = 11·197, and so by Chinese Remainder Theorem we just determine
the number of ways to do this for p = 11 and p = 197.

For p = 11, this reduces down to the congruence 3x2+27y2 ≡ 3 (mod 11), or that x2+9y2 ≡ 1
(mod 11). Since 9 is a square, we see that we can write z = 3y and solve x2 +z2 ≡ 1 (mod 11),
and get the same number of solutions (since we can then find y again given z).

As for p = 197, we get that 3x2 + 27y2 ≡ 51 (mod 197), or that x2 + 9y2 ≡ 17 (mod 197),
which we may again write as x2 + z2 ≡ 17 (mod 197). Notice, however, that 197 ≡ 1 (mod 4),
meaning that 17 is a quadratic residue of 197 if and only if 197 is one of 17, or that 10 is a
square (mod 17). We can see that 108 (mod 17) ≡ (−2)4 (mod 17) ≡ −1 (mod 17), meaning
that, in fact, 17 is a non-quadratic residue (mod 197).

We now claim that the first equation has 12 solutions, and the second has 196. Here let p = 197
and r = 17. Let the number of solutions be N for x2 + z2 ≡ r (mod p), where r 6= 0. Then, we
have N =

∑
a+b=r(1 +

(
a
p

)
)(1 +

(
b
p

)
). Thus N = p+

∑
a

(
a
p

)
+
∑

b

(
b
p

)
+
∑

a+b=r

(
a
p

)(
b
p

)
. The

first two sums are easily seen to be 0. As for the third one, we consider the possibilities that
we’re allowed to have. First, suppose that a, b are both squares; notice then that, since 197 ≡ 1
(mod 4), −1 is a square too, so we find the number of solutions to (x−y)(x+y) = x2−y2 ≡ r
(mod 197). Notice that, given x− y 6= 0, we can find x+ y and thus x, y. This yields us with
196 solutions. But considering the signs that are allowed, we see that we can negate x, y freely,
and since 17 isn’t a square modulo 196, but −1 is, we can’t have either be 0, yielding us with
p−1
4 = 49 solutions here.

Therefore, since we have p+1
2 = 99 squares, we thus have 50 pairs where a is a square, b isn’t,

and so 50 where b is a square, a isn’t, and therefore 48 where neither are squares. However,
notice that we have two terms, namely those with (0, 17) and (17, 0) that we subtract because
they contribute 0, not 1. But then notice that we get 49 + 48− 50− 50 + 2 = −1. Therefore,
we have that N = p− 1.

We now run this argument for p = 11. Notice that we end up getting that, for a + b = 1,
since −1 is a nonquadratic residue for 11, we see that the number where a is a square, b isn’t
is the number of solutions x2 − y2 = 1, where y 6= 0. We have in total 10 solutions for x, y,
of which 2 have y = 0, and then we divide again by 4 to get 2 solutions in total. Thus,
we have 6 − 2 = 4 pairs where both are squares, 2 again with one but not the other, and 3
where both are not squares. This then evaluates to 3. But again, here we have the pairs (0, 1)
and (1, 0) which contribute 0 each, not 1, so we subtract 2. Therefore, we see that we have
p+ 4− 2− 2 + 3− 2 = p+ 1 solutions here.

Our answer is thus 12 · 196 = 2352.

7. Let φ(x, v) be the smallest positive integer n so that 2v divides xn + 95 if it exists, or 0 if no

such positive integer exists. Determine
∑255

i=0 φ(i, 8).

Proposed by: Frank Lu

Answer: 2704

All equivalences here are mod 256.

First, we observe that 6561 + 95 ≡ 6656 = 256 ∗ 26 ≡ 0, and 6561 = 38, so we can write the
desired divisibility as 28|xn − 38.
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We now instead compute the number of i such that φ(i, 8) = n for each n > 0. Write n = b2a,
where b is odd.

First, we’ll show that a ≤ 3 for there to be at least one solution.

By continuing squaring, we see that (−95)2 ≡ 65, 652 ≡ 129, 1292 ≡ 1, which means that
364 ≡ 1, but 332 is not equivalent to 1. But note that x64 − 1 ≡ 0 for all odd x, since writing
x = 2y + 1 yields that x64 − 1 ≡ 128(y + 63y2) ≡ 0. Thus, xb2

a ≡ 38, with a > 3, implies that

1 ≡ 32
9−a

, contradiction with a > 3.

Now, we know that a ≤ 3. Note that we expand out to get that we want x so that (xb −
32

3−a

)(xb + 32
3−a

) . . . (x2
a−1b + 32

2

). Note that none of the terms other than the first 2 can
contribute a power of 2 that is larger than 2, since these terms will be equivalent to 2 mod 4.
Note also that at most one of the first two terms can be divisible by 4.

If a > 0, then either xb ≡ 32
3−a

mod 28−a, or xb ≡ −32
3−a

mod 28−a. If a = 0, this is just
xb ≡ 38.

But b is odd, so it has an inverse modulo any power of 2. Raising each of these equations to
their appropriate powers yields a unique solution modulo 28−a.

Thus, the number of solutions for n is 1 if a = 0 and 2a+1 if 1 ≤ a ≤ 3.

Now, say xm ≡ xn ≡ 38. Write m = y2a, n = z2b, with y, z odd. If a 6= b, WLOG a < b.

Then xb−a = 1 gives that x2
a(2b−ay−z) ≡ 1. But 2b−ay − z would be odd, so we can raise

this to 2b−ay − z’s inverse modulo 64, giving x2
a ≡ 1, which means that xy2

a

= 38 ≡ 1, a
contradiction.

If a = b, repeating this yields that x2
a(y−z) ≡ 1, or that 38(y−z), by raising to the yth power.

But then we note that y − z must be divisible by 8. Thus, we see that we have 16 possible
values of n : 1, 3, 5, 7, 2, 6, 10, 14, 4, 12, 20, 28, 8, 24, 40, 56.

Summing these yields the answer (1+3+5+7)(1∗1+2∗4+4∗8+8∗16) = 16∗(1+8+32+128) =
16 ∗ (169) = 2704.

8. What is the smallest integer a0 such that, for every positive integer n, there exists a sequence
of distinct positive integers a0, a1, ..., an−1, an such that a0 = an, and for 0 ≤ i ≤ n− 1, a

ai+1

i

ends in the digits 0ai when expressed without leading zeros in base 10?

Proposed by: Austen Mazenko

Answer: 7

Evidently, a0 must be relatively prime to 10. First, we note that a0 6= 3; if it were, then 3a1 ≡ 3
(mod 100), and since ord100(3) = 20 we need a1 ≡ 1 (mod 20). Furthermore, if a1 has k digits,
we need a31 ≡ a1 (mod 10k+1), so (a1−1)(a1+1) ≡ 0 (mod 10k+1). Thus, a1 ≡ 1 (mod 5k+1),
which combined with a1 ≡ 1 (mod 4) means ν2(a1 + 1) = 1. But, ν2((a1− 1)(a1 + 1)) ≥ k+ 1
so ν2(a1 − 1) ≥ k. In particular, a1 − 1 ≥ 2k · 5k+1 = 5 · 10k, so a1 has more than k digits,
contradiction.

Now we claim that a0 = 7 works. If n = 2, then pick a1 = 2 · 58 − 1 = 781249. First,
ord100(7) = 4, and since 781249 ≡ 1 (mod 4) we have 7781249 ≡ 7 (mod 100). Then, 7812492 ≡
2 · 58 · (2 · 58 − 2) + 1 ≡ 22 · 58 · (58 − 1) ≡ 1 (mod 107) since ν2(58 − 1) = 2 + 3 + 1− 1 = 5 by
LTE. Hence, 7812496 ≡ (7812492)3 ≡ 1 (mod 107), as desired.

Otherwise, consider the arbitrarily long sequence a0 = 7, ak = 2 · 10k + 1, an−1 = 74218751 for
0 < k < n−1 First, 21 ≡ 1 (mod 4) implies 721 ≡ 7 (mod 100). Now, by the binomial theorem
it is evident (2·10k+1)50 ≡ 1 (mod 10k+2), and because 2·10k+1+1 ≡ 1 (mod 50) for k ≥ 1, we

have (2·10k+1)2·10
k+1+1 ≡ 2·10k+1 (mod 10k+2), and similarly for the exponent 74218751 ≡ 1

(mod 50). It remains to show 742187512 ≡ 1 (mod 109). We have 74218750 = 2 ∗ 59 ∗ 19 + 1,
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so 742187512 − 1 = 2 · 59 · 19 · 2(59 · 19 + 1), meaning we must show ν2(59 · 19 + 1) ≥ 7. Now,
53 ≡ −3 (mod 27), so 59 ≡ −27 (mod 27), thus 59 ·19+1 ≡ −27 ·19+1 ≡ −512 ≡ 0 (mod 27),
as desired.
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